Page 153 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 153

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                ͳǤͳͲ  ‹‰‡  ƒŽ—‡• ƒ†  ‹‰‡  ‡…–‘”•

                 ˜‡”› ”‡ƒŽ ƒ–”‹š ȋ™Š‘•‡ ‡Ž‡‡–• ƒ† †‡–‡”‹ƒ–• ƒ”‡ ”‡ƒŽȌ Šƒ• ”‡ƒŽ ”‘‘–•ǡ ™Š‹…Š †‡’‡†• ‘
                –Ї ‘”†‡” ‘ˆ –Ї ƒ–”‹šǤ

                 šƒ’Ž‡ǣ ƒ ȋ͵ š ͵Ȍ ƒ–”‹š Šƒ• ͵ ”‡ƒŽ ”‘‘–•Ǥ

                 Ї•‡  ”‘‘–•  ƒ”‡  …ƒŽŽ‡†  –Ї   ‹‰‡  ˜ƒŽ—‡•  ‘”  …Šƒ”ƒ…–‡”‹•–‹…  ”‘‘–•Ǥ   Ї•‡  …ƒ  „‡  ’”ƒ…–‹…ƒŽŽ›
                …‘””‘„‘”ƒ–‡† –‘ ’”‹…‹’ƒŽ ˜ƒŽ—‡•ǡ •—…Š ƒ•ǡ ƒ–—”ƒŽ ˆ”‡“—‡…‹‡• ‘ˆ ƒ •›•–‡ǡ ’”‹…‹’ƒŽ ‹‡”–‹ƒ• ‘ˆ ƒ
                •›•–‡ǡ ‡–…Ǥ

                Mathematically, for a matrix, say, ‘A’, assuming ‘λ’ to be the root/Eigen value, we have:

                Eigen value equation =  det A − λI  = 0 , where  I  is the identity matrix

                Example 1: find the Eigen value of the matrix ‘A’ in equation (1.65).

                     50 10
                A =             - - - - (1.65)
                     10 25

                                                         50 10       λ  0 1 0
                The Eigen value equation is given as:  det         −                  - - - - (1.66)
                                                         10 25       0   λ 0 1
                                                            50 − λ    10
                Simplifying the equation    .      , we get:  det               - - - - (1.67)
                                                              10    25 − λ
                The determinant of equation (1.67) is given as:


                                                                     2
                  50 − λ  25 − λ  − 100 = 0  = [1250 − 50λ − 25λ + λ − 100 = 0]
                 1150 − 75   +    = 0    - - - - (1.68)
                                2
                Rearranging the quadratic equation    .       we get:   λ − 75λ + 1150
                                                                    2
                The roots of the quadratic equation are got as follows:


                         2
                 −b ±  b − 4ac
                                 , where,  a = 1 ,  b = −75  and (c = 1150)
                       2a
                                      2
                                                           2
                              −b +  b − 4ac       75 +  75 − 4 1150
                First root  =                  =                         =  λ = 53.51     - - - - (1.69)
                                                                             1
                                    2a                      2
                                                              2
                                         2
                                 −b −  b − 4ac       75 −  75 − 4 1150
                Second Root  =                    =                         =  λ = 21.49     - - - - (1.70)
                                       2a                      2                2






                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 56
   148   149   150   151   152   153   154   155   156   157   158