Page 153 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 153
Fundamentals of Stress and Vibration
[A Practical guide for aspiring Designers / Analysts] 1. Mathematics for Structural mechanics
ͳǤͳͲ
ȋ Ȍ ǡ
Ǥ
ǣ ȋ͵ ͵Ȍ ͵ Ǥ
Ǥ
ǡ
ǡ
ǡ
ǡ
Ǥ
Mathematically, for a matrix, say, ‘A’, assuming ‘λ’ to be the root/Eigen value, we have:
Eigen value equation = det A − λI = 0 , where I is the identity matrix
Example 1: find the Eigen value of the matrix ‘A’ in equation (1.65).
50 10
A = - - - - (1.65)
10 25
50 10 λ 0 1 0
The Eigen value equation is given as: det − - - - - (1.66)
10 25 0 λ 0 1
50 − λ 10
Simplifying the equation . , we get: det - - - - (1.67)
10 25 − λ
The determinant of equation (1.67) is given as:
2
50 − λ 25 − λ − 100 = 0 = [1250 − 50λ − 25λ + λ − 100 = 0]
1150 − 75 + = 0 - - - - (1.68)
2
Rearranging the quadratic equation . we get: λ − 75λ + 1150
2
The roots of the quadratic equation are got as follows:
2
−b ± b − 4ac
, where, a = 1 , b = −75 and (c = 1150)
2a
2
2
−b + b − 4ac 75 + 75 − 4 1150
First root = = = λ = 53.51 - - - - (1.69)
1
2a 2
2
2
−b − b − 4ac 75 − 75 − 4 1150
Second Root = = = λ = 21.49 - - - - (1.70)
2a 2 2
QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
Page 56

