Page 401 - Color_Atlas_of_Physiology_5th_Ed._-_A._Despopoulos_2003
P. 401

Important Equations in Physiology
       1. Fick’s law of diffusion for membrane trans-  4. Nernst equation (see also p. 32)
         port (see also p. 20ff.)               –1 · log  [X] i  [mV]
               ∆C                       E x = –61 · z x
         J diff = F · D ·  [mol · s ]               [X] a
                       –1
               ∆x                       E x = equilibrium potential of ion X [mV];
                           –1
         J diff = net diffusion rate [mol · s ];  z x = valency of ion X;
               2
         A = area [m ];                 [X] i = intracellular concentration of ion X
         D = diffusion coefficient [m · s ];  [mol · m ]
                         2
                           –1
                                             –3
         ∆C = concentration difference [mol · m ];  [X o] = extracellular concentration of ion X
                                –3
                                             –3
         ∆x = membrane thickness [m]    [mol · m ].
         Alternative 1:
                                       5. Ohm’s Law (see also pp. 32, 188)
         J diff  = P · ∆C [mol · m –2  · s ]
                        –1
         F                              a. For ion transport at membrane
                            –1
         P = permeability coefficient [m · s ];  I x = g x · (E m –E x) [A · m ]
                                                      –2
         J diff, A an ∆C; see above
                                        I x = ionic current of ion X per unit area
         Alternative 2 (for gas diffusion)  of membrane [A · m ];
                                                    –2
         .
    Appendix  V diff = net diffusion rate [m · s ];  [S · m ];
               ∆P
                                        g x = conductance of membrane to ion X
                  [m · s ]
                     –1
         V diff
            = K ·
               ∆x
         F
                                            –2
         .
                        3
                          –1
                                        E m = membrane potential [V];
                                  -1
                             2
                               -1
    13   K = Krogh’s diffusion coefficient [m · s · Pa ]  E x = equilibrium potential of ion X [V]
         ∆P = partial pressure difference [Pa]
                                        b. For blood flow:
                                         .
       2. Van’t Hoff–Stavermann equation  Q =  ∆P  [L · min ]
                                                  –1
         (see also p. 377)               .  R
                                        Q = flow rate (total circulation:
         ∆π = σ · R · T · ∆c osm [Pa]   cardiac output, CO) [L · min ]
                                                        –1
         ∆π = osmotic pressure difference [Pa]  ∆P = mean blood pressure difference
         σ = reflection coefficient [dimensionsless]  (systemic circulation: P aorta –P vena cava;
         R = universal gas constant [8.3144J · K –1 ·  lesser circulation: P pulmonary artery –P pulmo-
         mol ];                         nary vein) [mmHg]
           –1
         T = absolute temperature [K];  R = flow resistance (systemic circula-
         ∆c osm = concentration difference of  tion:
                              –3
         osmotically active particles [mol · m ].  total peripheral resistance = TPR)
                                        [mmHg · min · L ].
                                                  –1
       3. Michaelis-Menten equation
         (see also pp. 28, 383ff.)     6. Respiration-related equations
                 C                      (see also pp. 106, 120)
                            –1
         J sat = J max ·  [mol · m –2 · s ],
               K M + C                  a. Tidal volume (V T):
         J sat = substrate transport (turnover)  V T = V D + V A [L]
                –1
         [mol · m –2  · s ];            b. Respiratory volume per minute
                                           .
                                                .
         J max = maximum substrate transport  (V E oder V T):
                                          .
         (turnover) [mol · m –2  · s ];   V E = f · V T = (f · V D) + (f · V A) =
                       –1
                                          .
                                             .
                              –3
         C = substrate concentration [mol · m ];  V D + V A [L · min ]
                                                    –l
         K M = Michaelis constant = substrate  c. O 2 consumption, CO 2 emission,
         concentration at /2 J max [mol · m ].  and RQ (total body:)
                            –3
                   1
                                             .
                                          .
                                          V O 2 = V T (FI O 2 –FE O 2 ) = CO · avD O 2 [L · min ]
                                                                  –1
                                              .
                                          .
                                                        –1
                                          V CO 2 = V T · FE CO 2 [L · min ]
                                               .
                                               .
                                          RQ =  V CO 2
  388                                          V O 2
       Despopoulos, Color Atlas of Physiology © 2003 Thieme
       All rights reserved. Usage subject to terms and conditions of license.
   396   397   398   399   400   401   402   403   404   405   406