Page 530 - Cardiac Nursing
P. 530
009
06
e 5
9/2
qxd
0
9/0
8:2
ara
p46
g
P
8 A
M
P
10.
K34
0-c
21_
K34
L L LWB K34 0-c 21_ p46 0-5 10. qxd 0 9/0 9/2 009 0 0 8:2 8 A M P a a g e 5 06 Apt ara
LWB
LWBK340-c21_21_p460-510.qxd 09/09/2009 08:28 AM Page 506 Aptara
0-5
Apt
06
10.
506 P A R T III / Assessment of Heart Disease
331. Linton, R. A., Band, D. M., & Haire, K. M. (1993). A new method of 352. Cecconi, M., Fawcett, J., Grounds, R. M., et al. (2008). A prospective
measuring cardiac output in man using lithium dilution. British Journal study to evaluate the accuracy of pulse power analysis to monitor cardiac
of Anaesthesiology, 71, 262–266. output in critically ill patients. BMC Anesthesiology, 8, 3.
332. Jonas, M. M., & Tanser, S. J. (2002). Lithium dilution measurement of 353. Cooper, E. S., & Muir, W. W. (2007). Continuous cardiac output mon-
cardiac output and arterial pulse waveform analysis: An indicator dilu- itoring via arterial pressure waveform analysis following severe hemor-
tion calibrated beat-by-beat system for continuous estimation of cardiac rhagic shock in dogs. Critical Care Medicine, 35, 1724–1729.
output. Current Opinion in Critical Care, 8, 257–261. 354. Michard, F. (2007). Bedside assessment of extravascular lung water by di-
333. Felbinger, T. W., Reuter, D. A., Eltzschig, H. K., et al. (2005). Cardiac lution methods: Temptations and pitfalls. Critical Care Medicine, 35,
index measurements during rapid preload changes: A comparison of pul- 1186–1192.
monary artery thermodilution with arterial pulse contour analysis. Jour- 355. Sakka, S. G., Klein, M., Reinhart, K., et al. (2002). Prognostic value of
7
7
nal of Clinical Anesthesia, 17, 241–248. extravascular lung water in critically ill patients. Chest, 122, 2080–2086.
334. Gunn, S. R., Kim, H. K., Harrigan, P. W., et al. (2006). Ability of pulse 356. Pittman, J., Bar-Yosef, S., SumPing, J., et al. (2005). Continuous cardiac
contour and esophageal Doppler to estimate rapid changes in stroke vol- output monitoring with pulse contour analysis: A comparison with
ume. Intensive Care Medicine, 32, 1537–1546. lithium indicator dilution cardiac output measurement. Critical Care
335. Manecke, G. R. (2005). Edwards FloTrac sensor and Vigileo monitor: Medicine, 33, 2015–2021.
Easy, accurate, reliable cardiac output assessment using the arterial pulse 357. Singer, M. (2006). The FTc is not an accurate marker of left ventricular
wave. Expert Review of Medical Devices, 2, 523–527. preload. Intensive Care Medicine, 32, 1089; author reply 1091.
336. Sander, M., Spies, C. D., Grubitzsch, H., et al. (2006). Comparison of un- 358. Gan, T. J., Soppitt, A., Maroof, M., et al. (2002). Goal-directed intraop-
calibrated arterial waveform analysis in cardiac surgery patients with ther- erative fluid administration reduces length of hospital stay after major
modilution cardiac output measurements. Critical Care, 10, R164–R173. surgery. Anesthesiology, 97, 820–826.
7
7
337. Cannesson, M., Attof, Y., Rosamel, P., et al. (2007). Comparison of Flo- 359. Sinclair, S., James, S., & Singer, M. (1997). Intraoperative intravascular
Trac cardiac output monitoring system in patients undergoing coronary volume optimisation and length of hospital stay after repair of proximal
artery bypass grafting with pulmonary artery cardiac output measure- femoral fracture: Randomised controlled trial. BMJ, 315, 909–912.
W
W
4
4
ments. European Journal of Anaesthesiology, 24, 832–839. 360. Wakeling, H. G., McFall, M. R., Jenkins, C. S., et al. (2005). Intraopera-
338. de Waal, E. E., Kalkman, C. J., Rex, S., et al. (2007). Validation of a new tive oesophageal Doppler guided fluid management shortens postoperative
arterial pulse contour-based cardiac output device. Critical Care Medi- hospital stay after major bowel surgery. British Journal of Anaesthesiology,
cine, 35, 1904–1909. 95, 634–642.
339. Lorsomradee, S., Lorsomradee, S. R., Cromheecke, S., et al. (2007). 361. Abbas, S. M., & Hill, A. G. (2008). Systematic review of the literature
Continuous cardiac output measurement: Arterial pressure analysis ver- for the use of oesophageal Doppler monitor for fluid replacement in ma-
sus thermodilution technique during cardiac surgery with cardiopul- jor abdominal surgery. Anaesthesia, 63, 44–51.
monary bypass. Anaesthesia, 62, 979–983. 362. Poeze, M., Ramsay, G., Greve, J. W., et al. (1999). Prediction of postop-
340. Manecke, G. R., Jr., & Auger, W. R. (2007). Cardiac output determina- erative cardiac surgical morbidity and organ failure within 4 hours of in-
tion from the arterial pressure wave: Clinical testing of a novel algorithm tensive care unit admission using esophageal Doppler ultrasonography.
7
7
that does not require calibration. Journal of Cardiothoracic and Vascular Critical Care Medicine, 27, 1288–1294.
Anesthesia, 21, 3–7. 363. Rady, M. Y. (2000). Prediction of postoperative cardiac surgical morbidity
341. Mayer, J., Boldt, J., Schollhorn, T., et al. (2007). Semi-invasive monitor- and organ failure at admission to the intensive care unit using esophageal
ing of cardiac output by a new device using arterial pressure waveform Doppler ultrasonography. Critical Care Medicine, 28, 3368–3369.
analysis: A comparison with intermittent pulmonary artery thermodilu- 364. McKendry, M., McGloin, H., Saberi, D., et al. (2004). Randomised con-
tion in patients undergoing cardiac surgery. British Journal of Anaesthesi- trolled trial assessing the impact of a nurse delivered, flow monitored proto-
ology, 98, 176–182. col for optimisation of circulatory status after cardiac surgery. BMJ, 329, 258.
9
9
342. Opdam, H. I., Wan, L., & Bellomo, R. (2007). A pilot assessment of the 365. Chytra, I., Pradl, R., Bosman, R., et al. (2007). Esophageal Doppler-
FloTrac cardiac output monitoring system. Intensive Care Medicine, 33, guided fluid management decreases blood lactate levels in multiple-
344–349. trauma patients: A randomized controlled trial. Critical Care, 11, R24.
343. Sakka, S. G., Kozieras, J., Thuemer, O., et al. (2007). Measurement of 366. Iregui, M. G., Prentice, D., Sherman, G., et al. (2003). Physicians’ esti-
cardiac output: A comparison between transpulmonary thermodilution mates of cardiac index and intravascular volume based on clinical assess-
and uncalibrated pulse contour analysis. British Journal of Anaesthesiology, ment versus transesophageal Doppler measurements obtained by critical
99, 337–342. care nurses. American Journal of Critical Care, 12, 336–342.
344. Prasser, C., Trabold, B., Schwab, A., et al. (2007). Evaluation of an im- 367. Ahmed, S., Syed, F., & Porembka, D. (2007). Echocardiographic evalua-
proved algorithm for arterial pressure-based cardiac output assessment tion of hemodynamic parameters. Critical Care Medicine, 35, S323–S329.
without external calibration. Intensive Care Medicine, 33, 2223–2225. 368. Beaulieu, Y., & Marik, P. (2005). Bedside echocardiography in the ICU:
345. Mayer, J., Boldt, J., Wolf, M. W., et al. (2008). Cardiac output derived Part 2. Chest, 128, 1766–1781.
from arterial pressure waveform analysis in patients undergoing cardiac 369. Beaulieu, Y. (2007). Bedside echocardiography in the assessment of the
surgery: Validity of a second generation device. Anesthesia & Analgesia, critically ill. Critical Care Medicine, 35, S235–S249.
106, 867–872. 370. Douglas, P. S., Khandheria, B., Stainback, R. F., et al. (2007).
6
6
346. Compton, F. D., Zukunft, B., Hoffman, A. H., et al. (2008). Perfor- ACCF/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 appropriateness
mance of a minimally invasive cardiac output monitoring system (Flo- criteria for transthoracic and transesophageal echocardiography: A report
trac/Vigileo). British Journal of Anaesthesiology, 101, 279–280. of the American College of Cardiology Foundation Quality Strategic Di-
347. Compton, F. D., Zukunft, B., Hoffmann, C., et al. (2008). Performance rections Committee Appropriateness Criteria Working Group, American
of a minimally invasive uncalibrated cardiac output monitoring system Society of Echocardiography, American College of Emergency Physicians,
(Flotrac/Vigileo) in haemodynamically unstable patients. British Journal American Society of Nuclear Cardiology, Society for Cardiovascular An-
of Anaesthesiology, 100, 451–456. giography and Interventions, Society of Cardiovascular Computed Tomog-
348. Linton, N. W., & Linton, R. A. (2001). Estimation of changes in cardiac raphy, and the Society for Cardiovascular Magnetic Resonance endorsed by
output from the arterial blood pressure waveform in the upper limb. the American College of Chest Physicians and the Society of Critical Care
British Journal of Anaesthesiology, 86, 486–496. Medicine. Journal of the American College of Cardiology, 50, 187–204.
6
6
349. Godje, O., Hoke, K., Goetz, A. E., et al. (2002). Reliability of a new algo- 371. Bruch, C., Comber, M., Schmermund, A., et al. (2003). Diagnostic useful-
rithm for continuous cardiac output determination by pulse-contour analy- ness and impact on management of transesophageal echocardiography in
sis during hemodynamic instability. Critical Care Medicine, 30, 52–58. surgical intensive care units. American Journal of Cardiology, 91, 510–513.
350. Rodig, G., Prasser, C., Keyl, C., et al. (1999). Continuous cardiac out- 372. Bouchard, M. J., Denault, A., Couture, P., et al. (2004). Poor correlation
put measurement: Pulse contour analysis vs thermodilution technique in between hemodynamic and echocardiographic indexes of left ventricular
cardiac surgical patients. British Journal of Anesthesiology, 82, 525–530. performance in the operating room and intensive care unit. Critical Care
351. Hamzaoui, O., Monnet, X., Richard, C., et al. (2008). Effects of changes Medicine, 32, 644–648.
in vascular tone on the agreement between pulse contour and transpul- 373. Colreavy, F. B., Donovan, K., Lee, K. Y., et al. (2002). Transesophageal
monary thermodilution cardiac output measurements within an up to 6- echocardiography in critically ill patients. Critical Care Medicine, 30,
hour calibration-free period. Critical Care Medicine, 36, 434–440. 989–996.
6
6

