Page 529 - Cardiac Nursing
P. 529

8 A
                                        8:2
                                               P
                                             M
                                9/0
                               0
                                    009
                                  9/2
                    p46
                                                    05
                                                    05
                                                  e 5
                                                 g
                                               P
                                                       Apt
                                                         ara
                       0-5
            K34
               0-c
                 21_
            K34
         L L LWB K34 0-c 21_ p46 0-5 10. qxd  0 9/0 9/2 009  0 0 8:2 8 A M  P a a g e 5 05  Apt ara
         LWB
         LWBK340-c21_21_p460-510.qxd  09/09/2009  08:28 AM  Page 505 Aptara
                         10.
                           qxd
                         10.
                                                                           C HAPTER 21 / Hemodynamic Monitoring    505
                   284. Malbrain, M. L., Chiumello, D., Pelosi, P., et al. (2004). Prevalence of  308. Huang, C. C., Tsai, Y. H., Chen, N. H., et al. (2000). Spontaneous vari-
                      intra-abdominal hypertension in critically ill patients: A multicentre epi-  ability of cardiac output in ventilated critically ill patients. Critical Care
                      demiological study. Intensive Care Medicine, 30, 822–829.  Medicine, 28, 941–946.
                   285. Duperret, S., Lhuillier, F., Piriou, V., et al. (2007). Increased intra-  309. Nguyen, T. V., & Hillman, K. M. (2001). On the analysis and interpre-
                      abdominal pressure affects respiratory variations in arterial pressure in  tation of spontaneous variability of cardiac output. Critical Care Medi-
                      normovolaemic and hypovolaemic mechanically ventilated healthy pigs.  cine, 29, 220–221.
                      Intensive Care Medicine, 33, 163–171.            310. Østergaard, M., Nilsson, L. B., Nilsson, J. C., et al. (2005). Precision of
                   286. Malbrain, M. L., & De Laet, I. (2008). Functional haemodynamics dur-  bolus thermodilution cardiac output measurements in patients with
                      ing intra-abdominal hypertension: What to use and what not use. Acta  atrial fibrillation. Acta Anaesthesiologica Scandinavica, 49, 366–372.
                      Anaesthesiologica Scandinavica, 52, 576–577.     311. Chemla, D., & Nitenberg, A. (2006). Systolic duration, preload, and
                   287. Bliacheriene, F., Machado, S. B., Fonseca, E. B., et al. (2007). Pulse pres-  afterload: Is a new paradigm needed? Intensive Care Medicine, 32, 1454–1455.
                      sure variation as a tool to detect hypovolaemia during pneumoperi-  312. Sun, Q., Rogiers, P., Pauwels, D., et al. (2002). Comparison of continu-
                      toneum. Acta Anaesthesiologica Scandinavica, 51, 1268–1272.  ous thermodilution and bolus cardiac output measurements in septic
                   288. Boulain, T., Achard, J. M., Teboul, J. L., et al. (2002). Changes in BP in-  shock. Intensive Care Medicine, 28, 1276–1280.
                      duced by passive leg raising predict response to fluid loading in critically  313. Bendjelid, K., Schutz, N., Suter, P. M., et al. (2006). Continuous cardiac
                      ill patients. Chest, 121, 1245–1252.                output monitoring after cardiopulmonary bypass: A comparison with bo-
                   289. Lafanechere, A., Pene, F., Goulenok, C., et al. (2006). Changes in aortic  lus thermodilution measurement. Intensive Care Medicine, 32, 919–922.
                      blood flow induced by passive leg raising predict fluid responsiveness in  314. Zollner, C., Goetz, A. E., Weis, M., et al. (2001). Continuous cardiac
                      critically ill patients. Critical Care, 10, R132–R139.  output measurements do not agree with conventional bolus thermodilu-
                   290. Ridel, C., Lamia, B., Monnet, X., et al. (2006). Passive leg raising and  tion cardiac output determination. Canadian Journal of Anaesthesia, 48,
                      fluid responsiveness during spontaneous breathing: Pulse contour evalu-  1143–1147.
                      ation. Intensive Care Medicine, 32, S81.         315. Bao, F. P., & Wu, J. (2008). Continuous versus bolus cardiac output
                   291. De Backer, D. (2006). Can passive leg raising be used to guide fluid ad-  monitoring during orthotopic liver transplantation. Hepatobiliary &
                                                                                              7
                                                                                              7
                      ministration? Critical Care, 10, 170–171.           Pancreatic Disease International, 7, 138–144.
                   292. Lamia, B., Ochagavia, A., Monnet, X., et al. (2007). Echocardiographic  316. Button, D., Weibel, L., Reuthebuch, O., et al. (2007). Clinical evalua-
                      prediction of volume responsiveness in critically ill patients with sponta-  tion of the FloTrac/Vigileo™ system and two established continuous
                      neously breathing activity. Intensive Care Medicine, 33, 1125–1132.  cardiac output monitoring devices in patients undergoing cardiac sur-
                   293. Monnet, X., & Teboul, J. L. (2008). Passive leg raising. Intensive Care  gery. British Journal of Anaesthesia, 99, 329–336.
                             4
                      Medicine, 34, 659–663.                           317. Luchette, F., Johannigman, J., Branson, R., et al. (1995). Effect of body
                             4
                   294. Caille, V., Jabot, J., Belliard, G., et al. (2008). Hemodynamic effects of  temperature on accuracy of continuous cardiac output measurements.
                      passive leg raising: An echocardiographic study in patients with shock.  Critical Care Medicine, 23, A137.
                      Intensive Care Medicine, 34, 1239–1245.          318. O’Malley, P., Smith, B., Hamlin, R., et al. (2000). A comparison of bo-
                                      4
                                      4
                   295. Jabot, J., Teboul, J. L., Richard, C., et al. (2008). Passive leg raising for  lus versus continuous cardiac output in an experimental model of heart
                      predicting fluid responsiveness: Importance of the postural change. In-  failure. Critical Care Medicine, 28, 1985–1990.
                                     4
                      tensive Care Medicine, 34, S187.                 319. Boyle, M., Jacobs, S., Torda, T. A., et al. (1997). Assessment of the agree-
                                     4
                   296. Maizel, J., Airapetian, N., Lorne, E., et al. (2007). Diagnosis of central  ment between cardiac output measured by bolus thermodilution and
                      hypovolemia by using passive leg raising. Intensive Care Medicine, 33,  continuous methods, with particular reference to the effect of heart
                      1133–1138.                                          rhythm. Australian Critical Care, 10, 5–8, 10–11.
                   297. Teboul, J. L., & Monnet, X. (2008). Prediction of volume responsiveness  320. Medin, D., Brown, D., Onibene, F., et al. (1997). Comparison of cardiac
                      in critically ill patients with spontaneous breathing activity. Current  output measurements by bolus thermodilution technique and continu-
                                       4
                      Opinion in Critical Care, 14, 334–339.              ous automated thermal technique in critically ill patients. Critical Care
                                       4
                   298. Bertolissi, M., Broi, U. D., Soldano, F., et al. (2003). Influence of passive  Medicine, 25, A81.
                      leg elevation on the right ventricular function in anaesthetized coronary  321. Mets, B., Frumento, R. J., Bennett-Guerrero, E., et al. (2002). Validation
                      patients. Critical Care, 7, 164–170.                of continuous thermodilution cardiac output in patients implanted with
                                     7
                                     7
                   299. Nilsson, L. B., Nilsson, J. C., Skovgaard, L. T., et al. (2004). Thermodi-  a left ventricular assist device. Journal of Cardiothoracic and Vascular Anes-
                                                                               6
                                                                               6
                      lution cardiac output—are three injections enough? Acta Anaesthesiolog-  thesia, 16, 727–730.
                      ica Scandinavica, 48, 1322–1327.                 322. Lazor, M. A., Pierce, E. T., Stanley, G. D., et al. (1997). Evaluation of the
                   300. McCloy, K., Leung, S., Belden, J., et al. (1999). Effects of injectate vol-  accuracy and response time of STAT-mode continuous cardiac output.
                      ume on thermodilution measurements of cardiac output in patients with  Journal of Cardiothoracic and Vascular Anesthesia, 11, 432–436.
                      low ventricular ejection fraction. American Journal of Critical Care, 8,  323. Boyle, M., Murgo, M., Lawrence, J., et al. (2007). Assessment of the ac-
                      86–92.                                              curacy of continuous cardiac output and pulse contour cardiac output in
                   301. Griffin, K., Benjamin, E., DelGiudice, R., et al. (1997). Thermodilu-  tracking cardiac index changes induced by volume load. Australian Crit-
                      tion cardiac output measurement during simultaneous volume infu-  ical Care, 20, 106–112.
                      sion through the venous infusion port of the pulmonary artery  324. Aranda, M., Mihm, F. G., Garrett, S., et al. (1998). Continuous cardiac
                      catheter.  Journal of Cardiothoracic and  Vascular Anesthesia, 11,  output catheters: Delay in vitro response time after controlled flow
                      437–439.                                            changes. Anesthesiology, 89, 1592–1595.
                   302. Giuliano, K. K., Scott, S. S., Brown, V., et al. (2003). Backrest angle and  325. Poli de Figueiredo, L. F., Malbouisson, L. M., Varicoda, E. Y., et al.
                      cardiac output measurement in critically ill patients. Nursing Research, 52,  (1999). Thermal filament continuous thermodilution cardiac output de-
                      242–248.                                            layed response limits its value during acute hemodynamic instability. The
                                                                                      7
                   303. Killu, K., Oropello, J. M., Manasia, A. R., et al. (2007). Effect of lower  Journal of Trauma, 47, 288–293.
                                                                                      7
                      limb compression devices on thermodilution cardiac output measure-  326. Singh, A., Juneja, R., Mehta, Y., et al. (2002). Comparison of continu-
                      ment. Critical Care Medicine, 35, 1307–1311.        ous, stat, and intermittent cardiac output measurements in patients un-
                   304. Bottiger, B. W., Rauch, H., Bohrer, H., et al. (1995). Continuous versus  dergoing minimally invasive direct coronary artery bypass surgery. Jour-
                                                                                                       6
                      intermittent cardiac output measurement in cardiac surgical patients un-  nal of Cardiothoracic and Vascular Anesthesia, 16, 186–190.
                                                                                                       6
                      dergoing hypothermic cardiopulmonary bypass. Journal of Cardiothoracic  327. Haller, M., Zollner, C., Briegel, J., et al. (1995). Evaluation of a new con-
                      and Vascular Anesthesia, 9, 405–411.                tinuous thermodilution cardiac output monitor in critically ill patients: A
                   305. Ong, T., Gillies, M. A., & Bellomo, R. (2004). Failure of continuous car-  prospective criterion standard study. Critical Care Medicine, 23, 860–866.
                      diac output measurement using the PiCCO Device during induced hy-  328. Bridges, E. J. (2008). Arterial pressure-based stroke volume and functional
                      pothermia: A case report. Critical Care Resuscitation, 6, 99–101.  hemodynamic monitoring. Journal of Cardiovascular Nursing, 23, 105–112.
                                                       6
                                                       6
                   306. Sami, A., Rochdil, N., Hatem, K., et al. (2007). PiCCO monitoring ac-  329. de Wilde, R. B., Breukers, R. B., van den Berg, P. C., et al. (2006). Mon-
                      curacy in low body temperature. American Journal of Emergency Medicine,  itoring cardiac output using the femoral and radial arterial pressure wave-
                      25, 845–846.                                        form. Anaesthesia, 61, 743–746.
                   307. Sasse, S., Chen, P., Berry, R., et al. (1994). Variability of cardiac output over  330. Pearse, R. M., Ikram, K., Barry, J. (2004). Equipment review: An ap-
                      time in medical intensive care unit patients. Critical Care Medicine, 22,  praisal of the LiDCO plus method of measuring cardiac output. Critical
                      225–232.                                            Care, 8, 190–195.
   524   525   526   527   528   529   530   531   532   533   534