Page 529 - Cardiac Nursing
P. 529
8 A
8:2
P
M
9/0
0
009
9/2
p46
05
05
e 5
g
P
Apt
ara
0-5
K34
0-c
21_
K34
L L LWB K34 0-c 21_ p46 0-5 10. qxd 0 9/0 9/2 009 0 0 8:2 8 A M P a a g e 5 05 Apt ara
LWB
LWBK340-c21_21_p460-510.qxd 09/09/2009 08:28 AM Page 505 Aptara
10.
qxd
10.
C HAPTER 21 / Hemodynamic Monitoring 505
284. Malbrain, M. L., Chiumello, D., Pelosi, P., et al. (2004). Prevalence of 308. Huang, C. C., Tsai, Y. H., Chen, N. H., et al. (2000). Spontaneous vari-
intra-abdominal hypertension in critically ill patients: A multicentre epi- ability of cardiac output in ventilated critically ill patients. Critical Care
demiological study. Intensive Care Medicine, 30, 822–829. Medicine, 28, 941–946.
285. Duperret, S., Lhuillier, F., Piriou, V., et al. (2007). Increased intra- 309. Nguyen, T. V., & Hillman, K. M. (2001). On the analysis and interpre-
abdominal pressure affects respiratory variations in arterial pressure in tation of spontaneous variability of cardiac output. Critical Care Medi-
normovolaemic and hypovolaemic mechanically ventilated healthy pigs. cine, 29, 220–221.
Intensive Care Medicine, 33, 163–171. 310. Østergaard, M., Nilsson, L. B., Nilsson, J. C., et al. (2005). Precision of
286. Malbrain, M. L., & De Laet, I. (2008). Functional haemodynamics dur- bolus thermodilution cardiac output measurements in patients with
ing intra-abdominal hypertension: What to use and what not use. Acta atrial fibrillation. Acta Anaesthesiologica Scandinavica, 49, 366–372.
Anaesthesiologica Scandinavica, 52, 576–577. 311. Chemla, D., & Nitenberg, A. (2006). Systolic duration, preload, and
287. Bliacheriene, F., Machado, S. B., Fonseca, E. B., et al. (2007). Pulse pres- afterload: Is a new paradigm needed? Intensive Care Medicine, 32, 1454–1455.
sure variation as a tool to detect hypovolaemia during pneumoperi- 312. Sun, Q., Rogiers, P., Pauwels, D., et al. (2002). Comparison of continu-
toneum. Acta Anaesthesiologica Scandinavica, 51, 1268–1272. ous thermodilution and bolus cardiac output measurements in septic
288. Boulain, T., Achard, J. M., Teboul, J. L., et al. (2002). Changes in BP in- shock. Intensive Care Medicine, 28, 1276–1280.
duced by passive leg raising predict response to fluid loading in critically 313. Bendjelid, K., Schutz, N., Suter, P. M., et al. (2006). Continuous cardiac
ill patients. Chest, 121, 1245–1252. output monitoring after cardiopulmonary bypass: A comparison with bo-
289. Lafanechere, A., Pene, F., Goulenok, C., et al. (2006). Changes in aortic lus thermodilution measurement. Intensive Care Medicine, 32, 919–922.
blood flow induced by passive leg raising predict fluid responsiveness in 314. Zollner, C., Goetz, A. E., Weis, M., et al. (2001). Continuous cardiac
critically ill patients. Critical Care, 10, R132–R139. output measurements do not agree with conventional bolus thermodilu-
290. Ridel, C., Lamia, B., Monnet, X., et al. (2006). Passive leg raising and tion cardiac output determination. Canadian Journal of Anaesthesia, 48,
fluid responsiveness during spontaneous breathing: Pulse contour evalu- 1143–1147.
ation. Intensive Care Medicine, 32, S81. 315. Bao, F. P., & Wu, J. (2008). Continuous versus bolus cardiac output
291. De Backer, D. (2006). Can passive leg raising be used to guide fluid ad- monitoring during orthotopic liver transplantation. Hepatobiliary &
7
7
ministration? Critical Care, 10, 170–171. Pancreatic Disease International, 7, 138–144.
292. Lamia, B., Ochagavia, A., Monnet, X., et al. (2007). Echocardiographic 316. Button, D., Weibel, L., Reuthebuch, O., et al. (2007). Clinical evalua-
prediction of volume responsiveness in critically ill patients with sponta- tion of the FloTrac/Vigileo™ system and two established continuous
neously breathing activity. Intensive Care Medicine, 33, 1125–1132. cardiac output monitoring devices in patients undergoing cardiac sur-
293. Monnet, X., & Teboul, J. L. (2008). Passive leg raising. Intensive Care gery. British Journal of Anaesthesia, 99, 329–336.
4
Medicine, 34, 659–663. 317. Luchette, F., Johannigman, J., Branson, R., et al. (1995). Effect of body
4
294. Caille, V., Jabot, J., Belliard, G., et al. (2008). Hemodynamic effects of temperature on accuracy of continuous cardiac output measurements.
passive leg raising: An echocardiographic study in patients with shock. Critical Care Medicine, 23, A137.
Intensive Care Medicine, 34, 1239–1245. 318. O’Malley, P., Smith, B., Hamlin, R., et al. (2000). A comparison of bo-
4
4
295. Jabot, J., Teboul, J. L., Richard, C., et al. (2008). Passive leg raising for lus versus continuous cardiac output in an experimental model of heart
predicting fluid responsiveness: Importance of the postural change. In- failure. Critical Care Medicine, 28, 1985–1990.
4
tensive Care Medicine, 34, S187. 319. Boyle, M., Jacobs, S., Torda, T. A., et al. (1997). Assessment of the agree-
4
296. Maizel, J., Airapetian, N., Lorne, E., et al. (2007). Diagnosis of central ment between cardiac output measured by bolus thermodilution and
hypovolemia by using passive leg raising. Intensive Care Medicine, 33, continuous methods, with particular reference to the effect of heart
1133–1138. rhythm. Australian Critical Care, 10, 5–8, 10–11.
297. Teboul, J. L., & Monnet, X. (2008). Prediction of volume responsiveness 320. Medin, D., Brown, D., Onibene, F., et al. (1997). Comparison of cardiac
in critically ill patients with spontaneous breathing activity. Current output measurements by bolus thermodilution technique and continu-
4
Opinion in Critical Care, 14, 334–339. ous automated thermal technique in critically ill patients. Critical Care
4
298. Bertolissi, M., Broi, U. D., Soldano, F., et al. (2003). Influence of passive Medicine, 25, A81.
leg elevation on the right ventricular function in anaesthetized coronary 321. Mets, B., Frumento, R. J., Bennett-Guerrero, E., et al. (2002). Validation
patients. Critical Care, 7, 164–170. of continuous thermodilution cardiac output in patients implanted with
7
7
299. Nilsson, L. B., Nilsson, J. C., Skovgaard, L. T., et al. (2004). Thermodi- a left ventricular assist device. Journal of Cardiothoracic and Vascular Anes-
6
6
lution cardiac output—are three injections enough? Acta Anaesthesiolog- thesia, 16, 727–730.
ica Scandinavica, 48, 1322–1327. 322. Lazor, M. A., Pierce, E. T., Stanley, G. D., et al. (1997). Evaluation of the
300. McCloy, K., Leung, S., Belden, J., et al. (1999). Effects of injectate vol- accuracy and response time of STAT-mode continuous cardiac output.
ume on thermodilution measurements of cardiac output in patients with Journal of Cardiothoracic and Vascular Anesthesia, 11, 432–436.
low ventricular ejection fraction. American Journal of Critical Care, 8, 323. Boyle, M., Murgo, M., Lawrence, J., et al. (2007). Assessment of the ac-
86–92. curacy of continuous cardiac output and pulse contour cardiac output in
301. Griffin, K., Benjamin, E., DelGiudice, R., et al. (1997). Thermodilu- tracking cardiac index changes induced by volume load. Australian Crit-
tion cardiac output measurement during simultaneous volume infu- ical Care, 20, 106–112.
sion through the venous infusion port of the pulmonary artery 324. Aranda, M., Mihm, F. G., Garrett, S., et al. (1998). Continuous cardiac
catheter. Journal of Cardiothoracic and Vascular Anesthesia, 11, output catheters: Delay in vitro response time after controlled flow
437–439. changes. Anesthesiology, 89, 1592–1595.
302. Giuliano, K. K., Scott, S. S., Brown, V., et al. (2003). Backrest angle and 325. Poli de Figueiredo, L. F., Malbouisson, L. M., Varicoda, E. Y., et al.
cardiac output measurement in critically ill patients. Nursing Research, 52, (1999). Thermal filament continuous thermodilution cardiac output de-
242–248. layed response limits its value during acute hemodynamic instability. The
7
303. Killu, K., Oropello, J. M., Manasia, A. R., et al. (2007). Effect of lower Journal of Trauma, 47, 288–293.
7
limb compression devices on thermodilution cardiac output measure- 326. Singh, A., Juneja, R., Mehta, Y., et al. (2002). Comparison of continu-
ment. Critical Care Medicine, 35, 1307–1311. ous, stat, and intermittent cardiac output measurements in patients un-
304. Bottiger, B. W., Rauch, H., Bohrer, H., et al. (1995). Continuous versus dergoing minimally invasive direct coronary artery bypass surgery. Jour-
6
intermittent cardiac output measurement in cardiac surgical patients un- nal of Cardiothoracic and Vascular Anesthesia, 16, 186–190.
6
dergoing hypothermic cardiopulmonary bypass. Journal of Cardiothoracic 327. Haller, M., Zollner, C., Briegel, J., et al. (1995). Evaluation of a new con-
and Vascular Anesthesia, 9, 405–411. tinuous thermodilution cardiac output monitor in critically ill patients: A
305. Ong, T., Gillies, M. A., & Bellomo, R. (2004). Failure of continuous car- prospective criterion standard study. Critical Care Medicine, 23, 860–866.
diac output measurement using the PiCCO Device during induced hy- 328. Bridges, E. J. (2008). Arterial pressure-based stroke volume and functional
pothermia: A case report. Critical Care Resuscitation, 6, 99–101. hemodynamic monitoring. Journal of Cardiovascular Nursing, 23, 105–112.
6
6
306. Sami, A., Rochdil, N., Hatem, K., et al. (2007). PiCCO monitoring ac- 329. de Wilde, R. B., Breukers, R. B., van den Berg, P. C., et al. (2006). Mon-
curacy in low body temperature. American Journal of Emergency Medicine, itoring cardiac output using the femoral and radial arterial pressure wave-
25, 845–846. form. Anaesthesia, 61, 743–746.
307. Sasse, S., Chen, P., Berry, R., et al. (1994). Variability of cardiac output over 330. Pearse, R. M., Ikram, K., Barry, J. (2004). Equipment review: An ap-
time in medical intensive care unit patients. Critical Care Medicine, 22, praisal of the LiDCO plus method of measuring cardiac output. Critical
225–232. Care, 8, 190–195.

