Page 533 - Cardiac Nursing
P. 533

e 5
                    p46
                    p46
                                                    09
                                             M
                                             M
                                                    09
                                                       Apt
                                                       Apt
                                                         ara
                         10.
                                           8 A
                                                    09
                         10.
                       0-5
                       0-5
                                  9/2
                                               P
                                        8:2
                                        8:2
                                               P
                                        0
                                    009
                                    009
                                        0
                                9/0
                                               P
                         10.
                 21_
                 21_
               0-c
                                  9/2
                                                 g
                                                a
                                                a
         LWB
         L L LWB
         LWBK340-c21_21_p460-510.qxd  09/09/2009  08:28 AM  Page 509 Aptara
            K34
               0-c
            K34
            K34
                           qxd
                           qxd
                               0
                                                 g
                                                         ara
                                           8 A
                                                  e 5
                                9/0
                               0
                                                                           C HAPTER 21 / Hemodynamic Monitoring    509
                   471. Sebat, F., Johnson, D., Musthafa, A. A., et al. (2005). A multidisciplinary  496. Creteur, J., Carollo, T., Soldati, G., et al. (2007). The prognostic value
                      community hospital program for early and rapid resuscitation of shock  of muscle StO 2 in septic patients. Intensive Care Medicine, 33,
                                           7
                                           7
                      in nontrauma patients. Chest, 127, 1729–1743.       1549–1556.
                   472. Sebat, F., Musthafa, A. A., Johnson, D., et al. (2007). Effect of a rapid re-  497. Doerschug, K. C., Delsing, A. S., Schmidt, G. A., et al. (2007). Impair-
                      sponse system for patients in shock on time to treatment and mortality  ments in microvascular reactivity are related to organ failure in human
                      during 5 years. Critical Care Medicine, 35, 2568–2575.  sepsis. American Journal of Physiology. Heart and Circulatory Physiology,
                   473. Kortgen, A., Niederprum, P., & Bauer, M. (2006). Implementation of an  293, H1065–H1071.
                      evidence-based “standard operating procedure” and outcome in septic  498. Nishiguchi, B. K., Yu, M., Suetsugu, A., et al. (2008). Determination
                                          4
                      shock. Critical Care Medicine, 34, 943–949.         of reference ranges for transcutaneous oxygen and carbon dioxide ten-
                                          4
                   474. Otero, R. M., Nguyen, H. B., Huang, D. T., et al. (2006). Early goal-di-  sion and the oxygen challenge test in healthy and morbidly obese sub-
                      rected therapy in severe sepsis and septic shock revisited: Concepts, con-  jects. Journal of Surgical Research, 150, 204–211.
                      troversies, and contemporary findings. Chest, 130, 1579–1595.  499. Yu, M., Chapital, A., Ho, H. C., et al. (2007). A prospective randomized
                   475. Heringlake, M., Heinze, H., Misfeld, M., et al. (2008). Goal-directed he-  trial comparing oxygen delivery versus transcutaneous pressure of oxygen
                                                                                                7
                      modynamic optimization in high-risk cardiac surgery patients: A tale from  values as resuscitative goals. Shock, 27, 615–622.
                                                                                                7
                                                         4
                                                         4
                      the past or a future obligation? Minerva Anestesiologica, 74, 251–258.  500. Yu, M., Morita, S. Y., Daniel, S. R., et al. (2006). Transcutaneous pres-
                   476. Polonen, P., Ruokonen, E., Hippelainen, M., et al. (2000). A prospective,  sure of oxygen: A noninvasive and early detector of peripheral shock and
                      randomized study of goal-oriented hemodynamic therapy in cardiac sur-  outcome. Shock, 26, 450–456.
                                                                                     6
                                                                                     6
                      gical patients. Anesthesia & Analgesia, 90, 1052–1059.  501. Dantzker, D. R. (1993). The gastrointestinal tract. The canary of the
                   477. Uchino, S., Bellomo, R., Morimatsu, H., et al. (2006). Pulmonary artery  body? JAMA, 270, 1247–1248.
                      catheter versus pulse contour analysis: A prospective epidemiological  502. Creteur, J., De Backer, D., Sakr, Y., et al. (2006). Sublingual capnometry
                      study. Critical Care, 10, R174–R183.                tracks microcirculatory changes in septic patients. Intensive Care Medi-
                   478. Murugan, R., Venkataraman, R., Madden, N., et al. (2008). Preload  cine, 32, 516–523
                      responsiveness is associated with increased IL-6 and lower organ yield  503. Marik, P. E., & Bankov, A. (2003). Sublingual capnometry versus tradi-
                      from  cadaveric donors, 2008. Retrieved October 10, 2008, from  tional markers of tissue oxygenation in critically ill patients. Critical Care
                      http://www.lidco.com/archives/abstract-IL-6.pdf.    Medicine, 31, 818–822.
                   479. Pinsky, M. R., & Payen, D. (2005). Functional hemodynamic monitor-  504. Sakr, Y., Dubois, M. J., De Backer, D., et al. (2004). Persistent microcir-
                      ing. Critical Care, 9, 566–572.                     culatory alterations are associated with organ failure and death in patients
                   480. Vallet, B., Tygat, H., & Lebuffe, G. (2007). How to titrate vasopressors  with septic shock. Critical Care Medicine, 32, 1825–1831.
                                                     6
                      against fluid loading in sepsis. Advances in Sepsis, 6, 34–40.  505. Marik, P. E. (2006). Sublingual capnometry: A non-invasive measure of
                                                     6
                   481. Lopes, M. R., Oliveira, M. A., Pereira, V. O., et al. (2007). Goal-directed fluid  microcirculatory dysfunction and tissue hypoxia. Physiological Measure-
                                                                              7
                      management based on pulse pressure variation monitoring during high-risk  ment, 27, R37–R47.
                                                                              7
                      surgery: A pilot randomized controlled trial. Critical Care, 11, R100–R108.  506. Creteur, J. (2006). Gastric and sublingual capnometry. Current Opinion
                   482.Malhotra, K., Kakani, M., Chowdhury, U., et al. (2008). Early goal-directed  in Critical Care, 12, 272–277.
                      therapy in moderate to high-risk cardiac surgery patients. Annals of Cardiac  507. Weil, M. H., Nakagawa, Y., Tang, W., et al. (1999). Sublingual cap-
                                                                          W
                                                                          W
                      Anaesthesia, 11, 27–34.                             nometry: A new noninvasive measurement for diagnosis and quantita-
                                                                                                                     7
                                                                                                                     7
                   483. McKinley, B. A., Marvin, R. G., Cocanour, C. S., et al. (2000). Tissue  tion of severity of circulatory shock. Critical Care Medicine, 27,
                      hemoglobin O 2 saturation during resuscitation of traumatic shock mon-  1225–1229.
                      itored using near infrared spectrometry. Journal of Trauma, 48, 637–642.  508. Povoas, H. P., Weil, M. H., Tang, W., et al. (2001). Decreases in mesen-
                   484. Putnam, B., Bricker, S., Fedorka, P., et al. (2007). The correlation of  teric blood flow associated with increases in sublingual PCO2 during he-
                      near-infrared spectroscopy with changes in oxygen delivery in a con-  morrhagic shock. Shock, 15, 398–402.
                      trolled model of altered perfusion. American Surgery, 73, 1017–1022.  509. Pellis, T., Weil, M. H., Tang, W., et al. (2005). Increases in both buccal
                   485. Podbregar, M., & Mozina, H. (2007). Skeletal muscle oxygen saturation  and sublingual partial pressure of carbon dioxide reflect decreases of tis-
                      does not estimate mixed venous oxygen saturation in patients with severe  sue blood flows in a porcine model during hemorrhagic shock. Journal of
                      left heart failure and additional severe sepsis or septic shock. Critical  Trauma, 58, 817–824.
                      Care, 11, R6–R13.                                510. Cammarata, G. A., Weil, M. H., Castillo, C. J., et al. (2009). Buccal
                   486. Puyana, J. C., & Pinsky, M. R. (2007). Searching for non-invasive mark-  capnometry for quantitating the severity of hemorrhagic shock. Shock,
                      ers of tissue hypoxia. Critical Care, 11, 116–117.  31, 207–211.
                   487. Ikossi, D. G., Knudson, M. M., Morabito, D. J., et al. (2006). Contin-  511. Trzeciak, S., McCoy, J. V., Dellinger, R. P., et al. (2008). Early increases
                      uous muscle tissue oxygenation in critically injured patients: A prospec-  in microcirculatory perfusion during protocol-directed resuscitation are
                      tive observational study. Journal of Trauma, 61, 780–788.  associated with reduced multi-organ failure at 24 h in patients with sep-
                   488. Crookes, B. A., Cohn, S. M., Bloch, S., et al. (2005). Can near-infrared  sis. Intensive Care Medicine, 34, 2210–2217.
                                                                                            4
                                                                                            4
                      spectroscopy identify the severity of shock in trauma patients? Journal of  512. De Backer, D., Creteur, J., Dubois, M. J., et al. (2004). Microvascular al-
                      Trauma, 58, 806–813.                                terations in patients with acute severe heart failure and cardiogenic shock.
                                                                                           7
                                                                                           7
                   489. Soller, B. R., Ryan, K. L., Rickards, C. A., et al. (2008). Oxygen satura-  American Heart Journal, 147, 91–99.
                      tion determined from deep muscle, not thenar tissue, is an early indicator  513. De Backer, D., Creteur, J., Preiser, J. C., et al. (2002). Microvascular
                                                           6
                      of central hypovolemia in humans. Critical Care Medicine, 36, 176–182.  blood flow is altered in patients with sepsis. American Journal of Respira-
                                                           6
                   490. Cohn, S. M., Nathens, A. B., Moore, F. A., et al. (2007). Tissue oxygen  tory Critical Care Medicine, 166, 98–104.
                                                                                             6
                                                                                             6
                      saturation predicts the development of organ dysfunction during trau-  514. Elbers, P. W., & Ince, C. (2006). Mechanisms of critical illness–classify-
                      matic shock resuscitation. Journal of Trauma, 62, 44–54.  ing microcirculatory flow abnormalities in distributive shock. Critical
                   491. Moore, F. A., Nelson, T., McKinley, B. A., et al. (2008). Massive trans-  Care, 10, 221–228.
                      fusion in trauma patients: Tissue hemoglobin oxygen saturation predicts  515. Trzeciak, S., Dellinger, R. P., Parrillo, J. E., et al. (2007). Early microcir-
                      poor outcome. Journal of Trauma, 64, 1010–1023.     culatory perfusion derangements in patients with severe sepsis and septic
                                            4
                                            4
                   492. Creteur, J. (2008). Muscle StO 2 in critically ill patients. Current Opin-  shock: Relationship to hemodynamics, oxygen transport, and survival.
                                    4
                      ion in Critical Care, 14, 361–366.                  Annals of Emergency Medicine, 49 , 88–98.e2.
                                    4
                   493. Skarda, D. E., Mulier, K. E., Myers, D. E., et al. (2007). Dynamic near-  516. Fang, X., Tang, W., Sun, S., et al. (2006). Comparison of buccal micro-
                      infrared spectroscopy measurements in patients with severe sepsis. Shock,  circulation between septic and hemorrhagic shock. Critical Care Medi-
                       7
                       7
                      27, 348–353.                                        cine, 34, S447–S453.
                                                                              4
                                                                              4
                   494. De Blasi, R. A., Palmisani, S., Alampi, D., et al. (2005). Microvascular  517. De Backer, D., Creteur, J., Dubois, M. J., et al. (2006). The effects of
                      dysfunction and skeletal muscle oxygenation assessed by phase-modula-  dobutamine on microcirculatory alterations in patients with septic shock
                      tion near-infrared spectroscopy in patients with septic shock. Intensive  are independent of its systemic effects. Critical Care Medicine, 34,
                                                                                                                     4
                      Care Medicine, 31, 1661–1668.                       403–408.
                         z
                   495.Parezˇnik, R., Knezevic, R., Voga, G., et al. (2006). Changes in muscle tis-  518. De Backer, D., Verdant, C., Chierego, M., et al. (2006). Effects of
                      sue oxygenation during stagnant ischemia in septic patients. Intensive  drotrecogin alfa activated on microcirculatory alterations in patients with
                      Care Medicine, 32, 87–92.                           severe sepsis. Critical Care Medicine, 34, 1918–1924.
                                                                                                 4
                                                                                                 4
   528   529   530   531   532   533   534   535   536   537   538