Page 533 - Cardiac Nursing
P. 533
e 5
p46
p46
09
M
M
09
Apt
Apt
ara
10.
8 A
09
10.
0-5
0-5
9/2
P
8:2
8:2
P
0
009
009
0
9/0
P
10.
21_
21_
0-c
9/2
g
a
a
LWB
L L LWB
LWBK340-c21_21_p460-510.qxd 09/09/2009 08:28 AM Page 509 Aptara
K34
0-c
K34
K34
qxd
qxd
0
g
ara
8 A
e 5
9/0
0
C HAPTER 21 / Hemodynamic Monitoring 509
471. Sebat, F., Johnson, D., Musthafa, A. A., et al. (2005). A multidisciplinary 496. Creteur, J., Carollo, T., Soldati, G., et al. (2007). The prognostic value
community hospital program for early and rapid resuscitation of shock of muscle StO 2 in septic patients. Intensive Care Medicine, 33,
7
7
in nontrauma patients. Chest, 127, 1729–1743. 1549–1556.
472. Sebat, F., Musthafa, A. A., Johnson, D., et al. (2007). Effect of a rapid re- 497. Doerschug, K. C., Delsing, A. S., Schmidt, G. A., et al. (2007). Impair-
sponse system for patients in shock on time to treatment and mortality ments in microvascular reactivity are related to organ failure in human
during 5 years. Critical Care Medicine, 35, 2568–2575. sepsis. American Journal of Physiology. Heart and Circulatory Physiology,
473. Kortgen, A., Niederprum, P., & Bauer, M. (2006). Implementation of an 293, H1065–H1071.
evidence-based “standard operating procedure” and outcome in septic 498. Nishiguchi, B. K., Yu, M., Suetsugu, A., et al. (2008). Determination
4
shock. Critical Care Medicine, 34, 943–949. of reference ranges for transcutaneous oxygen and carbon dioxide ten-
4
474. Otero, R. M., Nguyen, H. B., Huang, D. T., et al. (2006). Early goal-di- sion and the oxygen challenge test in healthy and morbidly obese sub-
rected therapy in severe sepsis and septic shock revisited: Concepts, con- jects. Journal of Surgical Research, 150, 204–211.
troversies, and contemporary findings. Chest, 130, 1579–1595. 499. Yu, M., Chapital, A., Ho, H. C., et al. (2007). A prospective randomized
475. Heringlake, M., Heinze, H., Misfeld, M., et al. (2008). Goal-directed he- trial comparing oxygen delivery versus transcutaneous pressure of oxygen
7
modynamic optimization in high-risk cardiac surgery patients: A tale from values as resuscitative goals. Shock, 27, 615–622.
7
4
4
the past or a future obligation? Minerva Anestesiologica, 74, 251–258. 500. Yu, M., Morita, S. Y., Daniel, S. R., et al. (2006). Transcutaneous pres-
476. Polonen, P., Ruokonen, E., Hippelainen, M., et al. (2000). A prospective, sure of oxygen: A noninvasive and early detector of peripheral shock and
randomized study of goal-oriented hemodynamic therapy in cardiac sur- outcome. Shock, 26, 450–456.
6
6
gical patients. Anesthesia & Analgesia, 90, 1052–1059. 501. Dantzker, D. R. (1993). The gastrointestinal tract. The canary of the
477. Uchino, S., Bellomo, R., Morimatsu, H., et al. (2006). Pulmonary artery body? JAMA, 270, 1247–1248.
catheter versus pulse contour analysis: A prospective epidemiological 502. Creteur, J., De Backer, D., Sakr, Y., et al. (2006). Sublingual capnometry
study. Critical Care, 10, R174–R183. tracks microcirculatory changes in septic patients. Intensive Care Medi-
478. Murugan, R., Venkataraman, R., Madden, N., et al. (2008). Preload cine, 32, 516–523
responsiveness is associated with increased IL-6 and lower organ yield 503. Marik, P. E., & Bankov, A. (2003). Sublingual capnometry versus tradi-
from cadaveric donors, 2008. Retrieved October 10, 2008, from tional markers of tissue oxygenation in critically ill patients. Critical Care
http://www.lidco.com/archives/abstract-IL-6.pdf. Medicine, 31, 818–822.
479. Pinsky, M. R., & Payen, D. (2005). Functional hemodynamic monitor- 504. Sakr, Y., Dubois, M. J., De Backer, D., et al. (2004). Persistent microcir-
ing. Critical Care, 9, 566–572. culatory alterations are associated with organ failure and death in patients
480. Vallet, B., Tygat, H., & Lebuffe, G. (2007). How to titrate vasopressors with septic shock. Critical Care Medicine, 32, 1825–1831.
6
against fluid loading in sepsis. Advances in Sepsis, 6, 34–40. 505. Marik, P. E. (2006). Sublingual capnometry: A non-invasive measure of
6
481. Lopes, M. R., Oliveira, M. A., Pereira, V. O., et al. (2007). Goal-directed fluid microcirculatory dysfunction and tissue hypoxia. Physiological Measure-
7
management based on pulse pressure variation monitoring during high-risk ment, 27, R37–R47.
7
surgery: A pilot randomized controlled trial. Critical Care, 11, R100–R108. 506. Creteur, J. (2006). Gastric and sublingual capnometry. Current Opinion
482.Malhotra, K., Kakani, M., Chowdhury, U., et al. (2008). Early goal-directed in Critical Care, 12, 272–277.
therapy in moderate to high-risk cardiac surgery patients. Annals of Cardiac 507. Weil, M. H., Nakagawa, Y., Tang, W., et al. (1999). Sublingual cap-
W
W
Anaesthesia, 11, 27–34. nometry: A new noninvasive measurement for diagnosis and quantita-
7
7
483. McKinley, B. A., Marvin, R. G., Cocanour, C. S., et al. (2000). Tissue tion of severity of circulatory shock. Critical Care Medicine, 27,
hemoglobin O 2 saturation during resuscitation of traumatic shock mon- 1225–1229.
itored using near infrared spectrometry. Journal of Trauma, 48, 637–642. 508. Povoas, H. P., Weil, M. H., Tang, W., et al. (2001). Decreases in mesen-
484. Putnam, B., Bricker, S., Fedorka, P., et al. (2007). The correlation of teric blood flow associated with increases in sublingual PCO2 during he-
near-infrared spectroscopy with changes in oxygen delivery in a con- morrhagic shock. Shock, 15, 398–402.
trolled model of altered perfusion. American Surgery, 73, 1017–1022. 509. Pellis, T., Weil, M. H., Tang, W., et al. (2005). Increases in both buccal
485. Podbregar, M., & Mozina, H. (2007). Skeletal muscle oxygen saturation and sublingual partial pressure of carbon dioxide reflect decreases of tis-
does not estimate mixed venous oxygen saturation in patients with severe sue blood flows in a porcine model during hemorrhagic shock. Journal of
left heart failure and additional severe sepsis or septic shock. Critical Trauma, 58, 817–824.
Care, 11, R6–R13. 510. Cammarata, G. A., Weil, M. H., Castillo, C. J., et al. (2009). Buccal
486. Puyana, J. C., & Pinsky, M. R. (2007). Searching for non-invasive mark- capnometry for quantitating the severity of hemorrhagic shock. Shock,
ers of tissue hypoxia. Critical Care, 11, 116–117. 31, 207–211.
487. Ikossi, D. G., Knudson, M. M., Morabito, D. J., et al. (2006). Contin- 511. Trzeciak, S., McCoy, J. V., Dellinger, R. P., et al. (2008). Early increases
uous muscle tissue oxygenation in critically injured patients: A prospec- in microcirculatory perfusion during protocol-directed resuscitation are
tive observational study. Journal of Trauma, 61, 780–788. associated with reduced multi-organ failure at 24 h in patients with sep-
488. Crookes, B. A., Cohn, S. M., Bloch, S., et al. (2005). Can near-infrared sis. Intensive Care Medicine, 34, 2210–2217.
4
4
spectroscopy identify the severity of shock in trauma patients? Journal of 512. De Backer, D., Creteur, J., Dubois, M. J., et al. (2004). Microvascular al-
Trauma, 58, 806–813. terations in patients with acute severe heart failure and cardiogenic shock.
7
7
489. Soller, B. R., Ryan, K. L., Rickards, C. A., et al. (2008). Oxygen satura- American Heart Journal, 147, 91–99.
tion determined from deep muscle, not thenar tissue, is an early indicator 513. De Backer, D., Creteur, J., Preiser, J. C., et al. (2002). Microvascular
6
of central hypovolemia in humans. Critical Care Medicine, 36, 176–182. blood flow is altered in patients with sepsis. American Journal of Respira-
6
490. Cohn, S. M., Nathens, A. B., Moore, F. A., et al. (2007). Tissue oxygen tory Critical Care Medicine, 166, 98–104.
6
6
saturation predicts the development of organ dysfunction during trau- 514. Elbers, P. W., & Ince, C. (2006). Mechanisms of critical illness–classify-
matic shock resuscitation. Journal of Trauma, 62, 44–54. ing microcirculatory flow abnormalities in distributive shock. Critical
491. Moore, F. A., Nelson, T., McKinley, B. A., et al. (2008). Massive trans- Care, 10, 221–228.
fusion in trauma patients: Tissue hemoglobin oxygen saturation predicts 515. Trzeciak, S., Dellinger, R. P., Parrillo, J. E., et al. (2007). Early microcir-
poor outcome. Journal of Trauma, 64, 1010–1023. culatory perfusion derangements in patients with severe sepsis and septic
4
4
492. Creteur, J. (2008). Muscle StO 2 in critically ill patients. Current Opin- shock: Relationship to hemodynamics, oxygen transport, and survival.
4
ion in Critical Care, 14, 361–366. Annals of Emergency Medicine, 49 , 88–98.e2.
4
493. Skarda, D. E., Mulier, K. E., Myers, D. E., et al. (2007). Dynamic near- 516. Fang, X., Tang, W., Sun, S., et al. (2006). Comparison of buccal micro-
infrared spectroscopy measurements in patients with severe sepsis. Shock, circulation between septic and hemorrhagic shock. Critical Care Medi-
7
7
27, 348–353. cine, 34, S447–S453.
4
4
494. De Blasi, R. A., Palmisani, S., Alampi, D., et al. (2005). Microvascular 517. De Backer, D., Creteur, J., Dubois, M. J., et al. (2006). The effects of
dysfunction and skeletal muscle oxygenation assessed by phase-modula- dobutamine on microcirculatory alterations in patients with septic shock
tion near-infrared spectroscopy in patients with septic shock. Intensive are independent of its systemic effects. Critical Care Medicine, 34,
4
Care Medicine, 31, 1661–1668. 403–408.
z
495.Parezˇnik, R., Knezevic, R., Voga, G., et al. (2006). Changes in muscle tis- 518. De Backer, D., Verdant, C., Chierego, M., et al. (2006). Effects of
sue oxygenation during stagnant ischemia in septic patients. Intensive drotrecogin alfa activated on microcirculatory alterations in patients with
Care Medicine, 32, 87–92. severe sepsis. Critical Care Medicine, 34, 1918–1924.
4
4

