Page 528 - Cardiac Nursing
P. 528
8 A
P
10.
0-5
Apt
04
M
ara
9/2
9/0
8:2
009
p46
10.
0
qxd
04
K34
LWBK340-c21_21_p460-510.qxd 09/09/2009 08:28 AM Page 504 Aptara
K34
21_
0-c
g
e 5
P
LWB
L L LWB K34 0-c 21_ p46 0-5 10. qxd 0 9/0 9/2 009 0 0 8:2 8 A M P a a g e 5 04 Apt ara
504 P A R T III / Assessment of Heart Disease
237. Magder, S., Georgiadis, G., & Cheong, T. (1992). Respiratory variation 261. Cope, T., Marx, G., McCrossan, L., et al. (2002). Stroke volume varia-
in right atrial pressure predict the response to fluid challenge. Journal of tion for assessment of cardiac responsiveness to volume loading in severe
Critical Care, 7, 76–85. sepsis. Intensive Care Medicine, 28, S81.
7
7
238. Magder, S. (2006). Central venous pressure: A useful but not so simple 262. Pinsky, M. R. (2003). Probing the limits of arterial pulse contour analysis
4
measurement. Critical Care Medicine, 34, 2224–2227. to predict preload responsiveness. Anesthesia & Analgesia, 96, 1245–1247.
6
4
6
239. Pinsky, M. R. (2007). Heart-lung interactions. Current Opinion in Crit- 263. Reuter, D. A., Felbinger, T. W., Schmidt, C., et al. (2002). Stroke volume
ical Care, 13, 528–531. variations for assessment of cardiac responsiveness to volume loading in
240. Rivers, E., Nguyen, B., Havstad, S., et al. (2001). Early goal-directed mechanically ventilated patients after cardiac surgery. Intensive Care
therapy in the treatment of severe sepsis and septic shock. New England Medicine, 28, 392–398.
Journal of Medicine, 345, 1368–1377. 264. Wiesenack, C., Prasser, C., Rodig, G., et al. (2003). Stroke volume varia-
241. Magder, S., & Lagonidis, D. (1999). Effectiveness of albumin versus nor- tion as an indicator of fluid responsiveness using pulse contour analysis in
6
mal saline as a test of volume responsiveness in post-cardiac surgery pa- mechanically ventilated patients. Anesthesia & Analgesia, 96, 1254–1257.
6
4
4
tients. Journal of Critical Care, 14, 164–171. 265. Reuter, D. A., Bayerlein, J., Goepfert, M., et al. (2003). Functional pre-
242. Magder, S. (2006). Predicting volume responsiveness in spontaneously load monitoring by arterial pulse contour analysis: Influence of tidal vol-
breathing patients: Still a challenging problem. Critical Care, 10, 165. ume on left ventricular stroke volume variations (abstract). Critical Care
243. Magder, S., Lagonidis, D., & Erice, F. (2001). The use of respiratory vari- Medicine, 30, A19.
ations in right atrial pressure to predict the cardiac output response to 266. Cannesson, M., Delannoy, B., Morand, A., et al. (2008). Does the Pleth
PEEP. Journal of Critical Care, 16, 108–114. variability index indicate the respiratory-induced variation in the plethys-
6
6
6
244. Pizov, R., Ya’ari, Y., & Perel, A. (1988). Systolic pressure variation is mogram and arterial pressure waveforms? Anesthesia & Analgesia, 106,
6
greater during hemorrhage than during sodium nitroprusside-induced 1189–1194.
7
7
hypotension in ventilated dogs. Anesthesia & Analgesia, 67, 170–174. 267. Natalini, G., Rosano, A., Franceschetti, M. E., et al. (2006). Variations
245. Berkenstadt, H., Friedman, Z., Preisman, S., et al. (2005). Pulse pressure in arterial blood pressure and photoplethysmography during mechanical
and stroke volume variations during severe haemorrhage in ventilated ventilation. Anesthesia & Analgesia, 103, 1182–1188.
4
4
dogs. British Journal of Anaesthesia, 94, 721–726. 268. Cannesson, M., Attof, Y., Rosamel, P., et al. (2007). Respiratory varia-
246. De Backer, D., Heenen, S., Piagnerelli, M., et al. (2005). Pulse pressure tions in pulse oximetry plethysmographic waveform amplitude to predict
6
variations to predict fluid responsiveness: Influence of tidal volume. In- fluid responsiveness in the operating room. Anesthesiology, 106,
6
tensive Care Medicine, 31, 517–523. 1105–1111.
247. Charron, C., Fessenmeyer, C., Cosson, C., et al. (2006). The influence 269. Feissel, M., Teboul, J. L., Merlani, P., et al. (2007). Plethysmographic dy-
of tidal volume on the dynamic variables of fluid responsiveness in criti- namic indices predict fluid responsiveness in septic ventilated patients.
cally ill patients. Anesthesia & Analgesia, 102, 1511–1517. Intensive Care Medicine, 33, 993–999.
248. Kramer, A., Zygun, D., Hawes, H., et al. (2004). Pulse pressure variation 270. Solus-Biguenet, H., Fleyfel, M., Tavernier, B., et al. (2006). Non-invasive
predicts fluid responsiveness following coronary artery bypass surgery. prediction of fluid responsiveness during major hepatic surgery. British
6
6
Chest, 126, 1563–1568. Journal of Anaesthesia, 97, 808–816.
7
7
249. Reuter, D. A., Kirchner, A., Felbinger, T. W., et al. (2003). Usefulness of 271. Cannesson, M., Desebbe, O., Rosamel, P., et al. (2008). Pleth variability
left ventricular stroke volume variation to assess fluid responsiveness in index to monitor the respiratory variations in the pulse oximeter plethys-
patients with reduced cardiac function. Critical Care Medicine, 31, mographic waveform amplitude and predict fluid responsiveness in the
1399–1404. operating theatre. British Journal of Anaesthesiology, 101, 200–206.
250. Perner, A., & Faber, T. (2006). Stroke volume variation does not predict 272. Gesquiere, M. J., Awad, A. A., Silverman, D. G., et al. (2007). Impact of
fluid responsiveness in patients with septic shock on pressure support withdrawal of 450 ml of blood on respiration-induced oscillations of the
ventilation. Acta Anaesthesiologica Scandinavica, 50, 1068–1073. ear plethysmographic waveform. Journal of Clinical Monitoring and Com-
251. Wyffels, P. A., Durnez, P. J., Helderweirt, J., et al. (2007). Ventilation- puting, 21, 277–282.
induced plethysmographic variations predict fluid responsiveness in ven- 273. Delerme, S., Renault, R., Le Manach, Y., et al. (2007). Variations in
tilated postoperative cardiac surgery patients. Anesthesia & Analgesia, pulse oximetry plethysmographic waveform amplitude induced by pas-
105, 448–452. sive leg raising in spontaneously breathing volunteers. American Journal
252. Huang, C. C., Fu, J. Y., Hu, H. C., et al. (2008). Prediction of fluid re- of Emergency Medicine, 25, 637–642.
sponsiveness in acute respiratory distress syndrome patients ventilated 274. Keller, G., Cassar, E., Desebbe, O., et al. (2008). Ability of pleth vari-
with low tidal volume and high positive end-expiratory pressure. Critical ability index to detect hemodynamic changes induced by passive leg rais-
Care Medicine, 36, 2810–2816. ing in spontaneously breathing volunteers. Critical Care, 12, R37.
6
6
253. Auler, J. O., Jr., Galas, F. R., Sundin, M. R., et al. (2008). Arterial pulse 275. Shelley, K. H., Jablonka, D. H., Awad, A. A., et al. (2006). What is the
pressure variation predicting fluid responsiveness in critically ill patients. best site for measuring the effect of ventilation on the pulse oximeter
Shock, 30(Suppl. 1), 18–22. waveform? Anesthesia & Analgesia, 103, 372–377.
254. Michard, F., Chemla, D., Richard, C., et al. (1999). Clinical use of res- 276. Michard, F. (2007). Using pulse oximetry waveform analysis to guide
4
4
piratory changes in arterial pulse pressure to monitor the hemodynamic fluid therapy: Are we there yet? Anesthesia & Analgesia, 104, 1606–1607.
effects of PEEP. American Journal of Respiratory and Critical Care Medi- 277. Heenen, S., De Backer, D., & Vincent, J. L. (2006). How can the re-
cine, 159, 935–939. sponse to volume expansion in patients with spontaneous respiratory
255. Pinsky, M. (2002). Functional hemodynamic monitoring: Applied phys- movements be predicted? Critical Care, 10, R102–R108.
iology at the bedside. In J. L. Vincent (Ed.), Intensive care medicine. An- 278. Monnet, X., Rienzo, M., Osman, D., et al. (2006). Passive leg raising
nual update 2002 (pp. 537–552). Berlin, Germany: Springer-Verlag. predicts fluid responsiveness in the critically ill. Critical Care Medicine,
4
4
256. Kim, H. K., & Pinsky, M. R. (2008). Effect of tidal volume, sampling dura- 34, 1402–1407.
tion, and cardiac contractility on pulse pressure and stroke volume variation 279. Renner, J., Cavus, E., Meybohm, P., et al. (2007). Stroke volume varia-
6
6
during positive-pressure ventilation. Critical Care Medicine, 36, 2858–2862. tion during hemorrhage and after fluid loading: Impact of different tidal
257. Preisman, S., DiSegni, E., Vered, Z., et al. (2002). Left ventricular pre- volumes. Acta Anaesthesiologica Scandinavica, 51, 538–544.
load and function during graded haemorrhage and retransfusion in pigs: 280. Kubitz, J. C., Annecke, T., Kemming, G. I., et al. (2006). The influence
Analysis of arterial pressure waveform and correlation with echocardiog- of positive end-expiratory pressure on stroke volume variation and cen-
raphy. British Journal of Anaesthesia, 88, 716–718. tral blood volume during open and closed chest conditions. European
258. Ornstein, E., Eidelman, L. A., Drenger, B., et al. (1998). Systolic pres- Journal of Cardiothoracic Surgery, 30, 90–95.
sure variation predicts the response to acute blood loss. Journal of Clini- 281. Michard, F. (2005). Volume management using dynamic parameters:
cal Anesthesia, 10, 137–140. The good, the bad, and the ugly. Chest, 128, 1902–1903.
259. Rooke, G. A., Schwid, H. A., & Shapira, Y. (1995). The effect of graded 282. Pizov, R., Segal, E., Kaplan, L., et al. (1990). The use of systolic pressure
hemorrhage and intravascular volume replacement on systolic pressure variation in hemodynamic monitoring during deliberate hypotension in
variation in humans during mechanical and spontaneous ventilation. spine surgery. Journal of Clinical Anesthesia, 2, 96–100.
Anesthesia & Analgesia, 80, 925–932. 283. Fonseca, E. B., Otsuki, D. A., Fantoni, D. T., et al. (2008). Comparative
260. Westphal, G., Garrido Adel, P., de Almeida, D. P., et al. (2007). Pulse study of pressure- and volume-controlled ventilation on pulse pressure
pressure respiratory variation as an early marker of cardiac output fall in variation in a model of hypovolaemia in rabbits. European Journal of
experimental hemorrhagic shock. Artificial Organs, 31, 284–289. Anaesthesiology, 25, 388–394.

