Page 1040 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1040

Chapter 58  Pathobiology of Acute Myeloid Leukemia  923

            SUGGESTED READINGS                                    Grimwade  D,  Hills  RK,  Moorman  AV,  et al:  Refinement  of  cytogenetic
                                                                    classification  in  acute  myeloid  leukemia:  determination  of  prognostic
            Alter  BP,  Giri  N,  Savage  SA,  et al:  Malignancies  and  survival  patterns  in   significance  of  rare  recurring  chromosomal  abnormalities  among  5876
              the National Cancer Institute inherited bone marrow failure syndromes   younger adult patients treated in the United Kingdom Medical Research
              cohort study. Br J Haematol 150:179–188, 2010.        Council trials. Blood 116:354–365, 2010.
            Bennett JM, Catovsky D, Daniel MT, et al: Proposals for the classification of   Kakizuka A, Miller WH, Jr, Umesono K, et al: Chromosomal translocation
              the acute leukaemias. French-American-British (FAB) co-operative group.   t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a
              Br J Haematol 33:451–458, 1976.                       novel putative transcription factor, PML. Cell 66:663–674, 1991.
            Bonnet  D,  Dick  JE:  Human  acute  myeloid  leukemia  is  organized  as  a   Ley TJ, Ding L, Walter MJ, et al: DNMT3A mutations in acute myeloid
              hierarchy that originates from a primitive hematopoietic cell. Nat Med   leukemia. N Engl J Med 363:2424–2433, 2010.
              3:730–737, 1997.                                    Ley TJ, Miller C, Ding L, et al: The Cancer Genome Atlas Research Network.
            Byrd JC, Mrózek K, Dodge RK, et al: Pretreatment cytogenetic abnormalities   Genomic  and  epigenomic  landscapes  of  adult  de  novo  acute  myeloid
              are predictive of induction success, cumulative incidence of relapse, and   leukemia. N Engl J Med 368:2059–2074, 2013.
              overall survival in adult patients with de novo acute myeloid leukemia:   Liu P, Tarlé SA, Hajra A, et al: Fusion between transcription factor CBF beta/
              results  from  Cancer  and  Leukemia  Group  B  (CALGB  8461).  Blood   PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science
              100:4325–4336, 2002.                                  261:1041–1044, 1993.
            Corral  J,  Lavenir  I,  Impey  H,  et al:  An  Mll–AF9  fusion  gene  made  by   Lu C, Ward PS, Kapoor GS, et al: IDH mutation impairs histone demethyl-
              homologous  recombination  causes  acute  leukemia  in  chimeric  mice:  a   ation and results in a block to cell differentiation. Nature 483:474–478,
              method to create fusion oncogenes. Cell 85:853–861, 1996.  2012.
            Ding L, Ley TJ, Larson DE, et al: Clonal evolution in relapsed acute myeloid   Mitchell  JR, Wood  E, Collins  K:  A telomerase  component is defective in
              leukaemia revealed by whole-genome sequencing. Nature 481:506–510,   the human disease dyskeratosis congenita. Nature 402:551–555, 1999.
              2012.                                               Nakao M, Yokota S, Iwai T, et al: Internal tandem duplication of the flt3
            Döhner  H,  Estey  EH,  Amadori  S,  et al:  Diagnosis  and  management  of   gene found in acute myeloid leukemia. Leukemia 10:1911–1918, 1996.
              acute  myeloid  leukemia  in  adults:  recommendations  from  an  interna-  Pabst T, Mueller BU, Zhang P, et al: Dominant-negative mutations of CEBPA,
              tional  expert  panel,  on  behalf  of  the  European  LeukemiaNet.  Blood   encoding  CCAAT/enhancer  binding  protein-alpha  (C/EBPalpha),  in
              115:453–474, 2010.                                    acute myeloid leukemia. Nat Genet 27:263–270, 2001.
            Dong F, Brynes RK, Tidow N, et al: Mutations in the gene for the granu-  Pappaemmanuil E, Gerstung M, Bullinger L, et al: Genomic classification
              locyte colony-stimulating–factor receptor in patients with acute myeloid   and prognosis in acute myeloid leukemia. N Engl J Med 374:2209–2221,
              leukemia  preceded  by  severe  congenital  neutropenia.  N  Engl  J  Med   2016.
              333:487–493, 1995.                                  Paschka P, Marcucci G, Ruppert AS, et al: Adverse prognostic significance of
            Druker  BJ,  Guilhot  F,  O’Brien  SG,  et al:  Five-Year  follow-up  of  patients   KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21):
              receiving  Imatinib  for  chronic  myeloid  leukemia.  N  Engl  J  Med   a cancer and leukemia group B study. J Clin Oncol 24:3904–3911, 2006.
              355:2408–2417, 2006.                                Pedersen-Bjergaard  J:  Insights  into  Leukemogenesis  from Therapy-Related
            Erickson P, Gao J, Chang KS, et al: Identification of breakpoints in t(8;21)   Leukemia. N Engl J Med 352:1591–1594, 2005.
              acute myelogenous leukemia and isolation of a fusion transcript, AML1/  Shigesada K, van de Sluis B, Liu PP: Mechanism of leukemogenesis by the
              ETO,  with  similarity  to  Drosophila  segmentation  gene,  runt.  Blood   inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene 23:4297–4307,
              80:1825–1831, 1992.                                   2004.
            Ernst T, Chase AJ, Score J, et al: Inactivating mutations of the histone meth-  Shlush LI, Zandi S, Mitchell A, et al: Identification of pre-leukaemic hae-
              yltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726,   matopoietic stem cells in acute leukaemia. Nature 506:328–333, 2014.
              2010.                                               Walter MJ, Shen D, Ding L, et al: Clonal architecture of secondary acute
            Falini  B,  Mecucci  C,  Tiacci  E,  et al:  Cytoplasmic  nucleophosmin  in   myeloid leukemia. N Engl J Med 366:1090–1098, 2012.
              acute  myelogenous  leukemia  with  a  normal  karyotype.  N  Engl  J  Med   Welch JS, Ley TJ, Link DC, et al: The Origin and Evolution of Mutations
              352:254–266, 2005.                                    in Acute Myeloid Leukemia. Cell 150:264–278, 2012.
            Figueroa  ME,  Abdel-Wahab  O,  Lu  C,  et al:  Leukemic  IDH1  and  IDH2   Wong TN, Ramsingh G, Young AL, et al: Role of TP53 mutations in the
              mutations result in a hypermethylation phenotype, disrupt TET2 func-  origin and evolution of therapy-related acute myeloid leukaemia. Nature
              tion, and impair hematopoietic differentiation. Cancer Cell 18:553–567,   518:552–555, 2015.
              2010.
   1035   1036   1037   1038   1039   1040   1041   1042   1043   1044   1045