Page 1040 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1040
Chapter 58 Pathobiology of Acute Myeloid Leukemia 923
SUGGESTED READINGS Grimwade D, Hills RK, Moorman AV, et al: Refinement of cytogenetic
classification in acute myeloid leukemia: determination of prognostic
Alter BP, Giri N, Savage SA, et al: Malignancies and survival patterns in significance of rare recurring chromosomal abnormalities among 5876
the National Cancer Institute inherited bone marrow failure syndromes younger adult patients treated in the United Kingdom Medical Research
cohort study. Br J Haematol 150:179–188, 2010. Council trials. Blood 116:354–365, 2010.
Bennett JM, Catovsky D, Daniel MT, et al: Proposals for the classification of Kakizuka A, Miller WH, Jr, Umesono K, et al: Chromosomal translocation
the acute leukaemias. French-American-British (FAB) co-operative group. t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a
Br J Haematol 33:451–458, 1976. novel putative transcription factor, PML. Cell 66:663–674, 1991.
Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a Ley TJ, Ding L, Walter MJ, et al: DNMT3A mutations in acute myeloid
hierarchy that originates from a primitive hematopoietic cell. Nat Med leukemia. N Engl J Med 363:2424–2433, 2010.
3:730–737, 1997. Ley TJ, Miller C, Ding L, et al: The Cancer Genome Atlas Research Network.
Byrd JC, Mrózek K, Dodge RK, et al: Pretreatment cytogenetic abnormalities Genomic and epigenomic landscapes of adult de novo acute myeloid
are predictive of induction success, cumulative incidence of relapse, and leukemia. N Engl J Med 368:2059–2074, 2013.
overall survival in adult patients with de novo acute myeloid leukemia: Liu P, Tarlé SA, Hajra A, et al: Fusion between transcription factor CBF beta/
results from Cancer and Leukemia Group B (CALGB 8461). Blood PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science
100:4325–4336, 2002. 261:1041–1044, 1993.
Corral J, Lavenir I, Impey H, et al: An Mll–AF9 fusion gene made by Lu C, Ward PS, Kapoor GS, et al: IDH mutation impairs histone demethyl-
homologous recombination causes acute leukemia in chimeric mice: a ation and results in a block to cell differentiation. Nature 483:474–478,
method to create fusion oncogenes. Cell 85:853–861, 1996. 2012.
Ding L, Ley TJ, Larson DE, et al: Clonal evolution in relapsed acute myeloid Mitchell JR, Wood E, Collins K: A telomerase component is defective in
leukaemia revealed by whole-genome sequencing. Nature 481:506–510, the human disease dyskeratosis congenita. Nature 402:551–555, 1999.
2012. Nakao M, Yokota S, Iwai T, et al: Internal tandem duplication of the flt3
Döhner H, Estey EH, Amadori S, et al: Diagnosis and management of gene found in acute myeloid leukemia. Leukemia 10:1911–1918, 1996.
acute myeloid leukemia in adults: recommendations from an interna- Pabst T, Mueller BU, Zhang P, et al: Dominant-negative mutations of CEBPA,
tional expert panel, on behalf of the European LeukemiaNet. Blood encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in
115:453–474, 2010. acute myeloid leukemia. Nat Genet 27:263–270, 2001.
Dong F, Brynes RK, Tidow N, et al: Mutations in the gene for the granu- Pappaemmanuil E, Gerstung M, Bullinger L, et al: Genomic classification
locyte colony-stimulating–factor receptor in patients with acute myeloid and prognosis in acute myeloid leukemia. N Engl J Med 374:2209–2221,
leukemia preceded by severe congenital neutropenia. N Engl J Med 2016.
333:487–493, 1995. Paschka P, Marcucci G, Ruppert AS, et al: Adverse prognostic significance of
Druker BJ, Guilhot F, O’Brien SG, et al: Five-Year follow-up of patients KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21):
receiving Imatinib for chronic myeloid leukemia. N Engl J Med a cancer and leukemia group B study. J Clin Oncol 24:3904–3911, 2006.
355:2408–2417, 2006. Pedersen-Bjergaard J: Insights into Leukemogenesis from Therapy-Related
Erickson P, Gao J, Chang KS, et al: Identification of breakpoints in t(8;21) Leukemia. N Engl J Med 352:1591–1594, 2005.
acute myelogenous leukemia and isolation of a fusion transcript, AML1/ Shigesada K, van de Sluis B, Liu PP: Mechanism of leukemogenesis by the
ETO, with similarity to Drosophila segmentation gene, runt. Blood inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene 23:4297–4307,
80:1825–1831, 1992. 2004.
Ernst T, Chase AJ, Score J, et al: Inactivating mutations of the histone meth- Shlush LI, Zandi S, Mitchell A, et al: Identification of pre-leukaemic hae-
yltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726, matopoietic stem cells in acute leukaemia. Nature 506:328–333, 2014.
2010. Walter MJ, Shen D, Ding L, et al: Clonal architecture of secondary acute
Falini B, Mecucci C, Tiacci E, et al: Cytoplasmic nucleophosmin in myeloid leukemia. N Engl J Med 366:1090–1098, 2012.
acute myelogenous leukemia with a normal karyotype. N Engl J Med Welch JS, Ley TJ, Link DC, et al: The Origin and Evolution of Mutations
352:254–266, 2005. in Acute Myeloid Leukemia. Cell 150:264–278, 2012.
Figueroa ME, Abdel-Wahab O, Lu C, et al: Leukemic IDH1 and IDH2 Wong TN, Ramsingh G, Young AL, et al: Role of TP53 mutations in the
mutations result in a hypermethylation phenotype, disrupt TET2 func- origin and evolution of therapy-related acute myeloid leukaemia. Nature
tion, and impair hematopoietic differentiation. Cancer Cell 18:553–567, 518:552–555, 2015.
2010.

