Page 140 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 140

Chapter 9  Hematopoietic Stem Cell Biology  110.e1

            REFERENCES                                             26a.  Reischauer S, Stone OA, Villasenor A, et al: Cloche is a bHLH-PAS
                                                                      transcription factor that drives haemato-vascular specification. Nature
             1.  Zon  LI:  Intrinsic  and  extrinsic  control  of  haematopoietic  stem-cell   535:294–298, 2016. doi: 10.1038/nature18614.
                self-renewal. Nature 453:306–313, 2008. doi: 10.1038/nature07038.  27.  Shalaby  F,  et al:  A  requirement  for  Flk1  in  primitive  and  definitive
             2.  Weissman IL: Stem cells: units of development, units of regeneration,   hematopoiesis and vasculogenesis. Cell 89:981–990, 1997.
                and units in evolution. Cell 100:157–168, 2000.    28.  Shalaby F, et al: Failure of blood-island formation and vasculogenesis in
             3.  Orkin SH, Zon LI: SnapShot: hematopoiesis. Cell 132:712, 2008. doi:   Flk-1-deficient mice. Nature 376:62–66, 1995. doi: 10.1038/376062a0.
                10.1016/j.cell.2008.02.013.                        29.  Choi  K,  Kennedy  M,  Kazarov  A,  et al:  A  common  precursor  for
             4.  Schoemans  H,  Verfaillie  C:  Cellular  biology  of  hematopoiesis.  In   hematopoietic  and  endothelial  cells.  Development  125:725–732,
                Hoffman  R,  editor:  Hematology,  Philadelphia,  PA,  2009,  Churchill   1998.
                Livingstone, pp 200–212.                           30.  Kennedy  M,  et al:  A  common  precursor  for  primitive  erythropoi-
             5.  Jacobson  LO,  et al:  The  role  of  the  spleen  in  radiation  injury  and   esis  and  definitive  haematopoiesis.  Nature  386:488–493,  1997.  doi:
                recovery. J Lab Clin Med 35:746–770, 1950.            10.1038/386488a0.
             6.  Jacobson LO, Simmons EL, Marks EK, et al: Recovery from radiation   31.  Zambidis ET, Peault B, Park TS, et al: Hematopoietic differentiation
                injury. Science 113:510–511, 1951.                    of human embryonic stem cells progresses through sequential hema-
             7.  Lorenz E, Uphoff D, Reid TR, et al: Modification of irradiation injury   toendothelial,  primitive,  and  definitive  stages  resembling  human
                in mice and guinea pigs by bone marrow injections. J Natl Cancer Instit   yolk  sac  development.  Blood  106:860–870,  2005.  doi:  10.1182/
                12:197–201, 1951.                                     blood-2004-11-4522.
             8.  Little MT, Storb R: History of haematopoietic stem-cell transplanta-  32.  Kingsley  PD,  Malik  J,  Fantauzzo  KA,  et al:  Yolk  sac-derived  primi-
                tion. Nat Rev Cancer 2:231–238, 2002. doi: 10.1038/nrc748.  tive erythroblasts enucleate during mammalian embryogenesis. Blood
             9.  Jacobson LO, Marks EK, Gaston EO: [Effect of protection of the spleen   104:19–25, 2004. doi: 10.1182/blood-2003-12-4162.
                during  total  body  irradiation  on  the  blood  in  rabbit].  Rev  Hematol   33.  Tober J, et al: The megakaryocyte lineage originates from hemangio-
                8:515–532, 1953.                                      blast precursors and is an integral component both of primitive and of
             10.  Nowell  PC,  Cole  LJ,  Habermeyer  JG,  et al:  Growth  and  continued   definitive hematopoiesis. Blood 109:1433–1441, 2007. doi: 10.1182/
                function of rat marrow cells in x-radiated mice. Cancer Res 16:258–261,   blood-2006-06-031898.
                1956.                                              34.  Wong  PM,  Chung  SW,  Chui  DH,  et al:  Properties  of  the  earliest
             11.  Ford CE, Hamerton JL, Barnes DW, et al: Cytological identification of   clonogenic hemopoietic precursors to appear in the developing murine
                radiation-chimaeras. Nature 177:452–454, 1956.        yolk sac. Proc Natl Acad Sci USA 83:3851–3854, 1986.
             12.  Till JE, McCulloch CE: A direct measurement of the radiation sen-  35.  Palis J, Robertson S, Kennedy M, et al: Development of erythroid and
                sitivity of normal mouse bone marrow cells. Radiat Res 14:213–222,   myeloid progenitors in the yolk sac and embryo proper of the mouse.
                1961.                                                 Development 126:5073–5084, 1999.
             13.  McCulloch EA, Siminovitch L, Till JE: Spleen-Colony Formation in   36.  McGrath  KE,  et al:  Distinct  Sources  of  Hematopoietic  Progenitors
                Anemic Mice of Genotype Ww. Science 144:844–846, 1964.  Emerge  before  HSCs  and  Provide  Functional  Blood  Cells  in  the
             14.  Siminovitch L, McCulloch EA, Till JE: The Distribution of Colony-  Mammalian Embryo. Cell Rep 11:1892–1904, 2015. doi: 10.1016/j.
                Forming  Cells  among  Spleen  Colonies.  J  Cell  Physiol  62:327–336,   celrep.2015.05.036.
                1963.                                              37.  Van Handel B, et al: The first trimester human placenta is a site for
             15.  Becker AJ, Mc CE, Till JE: Cytological demonstration of the clonal   terminal maturation of primitive erythroid cells. Blood 116:3321–3330,
                nature  of  spleen  colonies  derived  from  transplanted  mouse  marrow   2010. doi: 10.1182/blood-2010-04-279489.
                cells. Nature 197:452–454, 1963.                   38.  Medvinsky A, Dzierzak E: Definitive hematopoiesis is autonomously
             16.  Abramson S, Miller RG, Phillips RA: The identification in adult bone   initiated by the AGM region. Cell 86:897–906, 1996.
                marrow  of  pluripotent  and  restricted  stem  cells  of  the  myeloid  and   39.  Medvinsky  AL,  Samoylina  NL,  Muller  AM,  et al:  An  early  pre-liver
                lymphoid systems. J Exp Med 145:1567–1579, 1977.      intraembryonic  source  of  CFU-S  in  the  developing  mouse.  Nature
             17.  Prohaska SS, Weissman I: Biology of hematopoietic stem and progeni-  364:64–67, 1993. doi: 10.1038/364064a0.
                tor cells. In Appelbaum F, Forman S, Negrin ••, et al, editors: Thomas’   40.  Muller AM, Medvinsky A, Strouboulis J, et al: Development of hema-
                Hematopoietic  Cell  Transplantation,  UK,  2008,  Wiley-Blackwell,  pp   topoietic stem cell activity in the mouse embryo. Immunity 1:291–301,
                p36–p63.                                              1994.
             18.  Orkin SH, Zon LI: Hematopoiesis: an evolving paradigm for stem cell   41.  Samokhvalov IM, Samokhvalova NI, Nishikawa S: Cell tracing shows
                biology. Cell 132:631–644, 2008. doi: 10.1016/j.cell.2008.01.025.  the  contribution  of  the  yolk  sac  to  adult  haematopoiesis.  Nature
             19.  Golub R, Cumano A: Embryonic hematopoiesis. Blood Cells Mol Dis   446:1056–1061, 2007. doi: 10.1038/nature05725.
                51:226–231, 2013. doi: 10.1016/j.bcmd.2013.08.004.  42.  Zovein AC, et al: Fate tracing reveals the endothelial origin of hema-
             20.  Dzierzak  E,  Speck  NA:  Of  lineage  and  legacy:  the  development  of   topoietic stem cells. Cell Stem Cell 3:625–636, 2008. doi: 10.1016/j.
                mammalian hematopoietic stem cells. Nat Immunol 9:129–136, 2008.   stem.2008.09.018.
                doi: 10.1038/ni1560.                               43.  Bertrand JY, et al: Haematopoietic stem cells derive directly from aortic
             21.  Galloway  JL,  Zon  LI:  Ontogeny  of  hematopoiesis:  examining  the   endothelium  during  development.  Nature  464:108–111,  2010.  doi:
                emergence of hematopoietic cells in the vertebrate embryo. Curr Top   10.1038/nature08738.
                Dev Biol 53:139–158, 2003.                         44.  Boisset  JC,  et al:  In  vivo  imaging  of  haematopoietic  cells  emerging
             22.  Ivanovs A, et al: Highly potent human hematopoietic stem cells first   from the mouse aortic endothelium. Nature 464:116–120, 2010. doi:
                emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp   10.1038/nature08764.
                Med 208:2417–2427, 2011. doi: 10.1084/jem.20111688.  45.  Kissa K, Herbomel P: Blood stem cells emerge from aortic endothelium
             23.  His W: Lecithoblast und Angioblast der Wirbeltiere. Abhandl Math-  by  a  novel  type  of  cell  transition.  Nature  464:112–115,  2010.  doi:
                Phys Ges Wiss 26:171–328, 1900.                       10.1038/nature08761.
             24.  Murray PDF: The development in vitro of the blood of the early chick   46.  Jaffredo  T,  Gautier  R,  Eichmann  A,  et al:  Intraaortic  hemopoietic
                embryo.  Proc  R  Soc  Lond  [Biol]  111:497–521,  1932.  doi:  10.1098/  cells are derived from endothelial cells during ontogeny. Development
                rspb.1932.0070.                                       125:4575–4583, 1998.
             25.  Stainier DY, Weinstein BM, Detrich HW, 3rd, et al: Cloche, an early   47.  Eilken  HM,  Nishikawa  S,  Schroeder  T:  Continuous  single-cell
                acting zebrafish gene, is required by both the endothelial and hemato-  imaging  of  blood  generation  from  haemogenic  endothelium.  Nature
                poietic lineages. Development 121:3141–3150, 1995.    457:896–900, 2009. doi: 10.1038/nature07760.
             26.  Vogeli KM, Jin SW, Martin GR, et al: A common progenitor for hae-  48.  Godin I, Garcia-Porrero JA, Dieterlen-Lievre F, et al: Stem cell emer-
                matopoietic and endothelial lineages in the zebrafish gastrula. Nature   gence and hemopoietic activity are incompatible in mouse intraembry-
                443:337–339, 2006. doi: 10.1038/nature05045.          onic sites. J Exp Med 190:43–52, 1999.
   135   136   137   138   139   140   141   142   143   144   145