Page 142 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 142

Chapter 9  Hematopoietic Stem Cell Biology  110.e3


                that  includes  giving  rise  to  CD34+  cells.  Exp  Hematol  26:353–360,   117.  Purton  LE,  et al:  RARgamma  is  critical  for  maintaining  a  balance
                1998.                                                 between hematopoietic stem cell self-renewal and differentiation. J Exp
             95.  Gao Z, et al: Human CD34+ cell preparations contain over 100-fold   Med 203:1283–1293, 2006. doi: 10.1084/jem.20052105.
                greater  NOD/SCID  mouse  engrafting  capacity  than  do  CD34-  cell   118.  Rosendaal M, Hodgson GS, Bradley TR: Organization of haemopoietic
                preparations. Exp Hematol 29:910–921, 2001.           stem cells: the generation-age hypothesis. Cell Tissue Kinet 12:17–29,
             96.  Baum CM, Weissman IL, Tsukamoto AS, et al: Isolation of a candidate   1979.
                human  hematopoietic  stem-cell  population.  Proc  Natl  Acad  Sci  USA   119.  Adams GB, et al: Stem cell engraftment at the endosteal niche is speci-
                89:2804–2808, 1992.                                   fied by the calcium-sensing receptor. Nature 439:599–603, 2006. doi:
             97.  Petzer AL, Zandstra PW, Piret JM, et al: Differential cytokine effects on   10.1038/nature04247.
                primitive (CD34+CD38-) human hematopoietic cells: novel responses   120.  Cancelas JA, et al: Rac GTPases differentially integrate signals regulat-
                to Flt3-ligand and thrombopoietin. J Exp Med 183:2551–2558, 1996.  ing hematopoietic stem cell localization. Nat Med 11:886–891, 2005.
             98.  Majeti  R,  Park  CY,  Weissman  IL:  Identification  of  a  hierarchy  of   doi: 10.1038/nm1274.
                multipotent hematopoietic progenitors in human cord blood. Cell Stem   121.  Ema  H,  et al:  Adult  mouse  hematopoietic  stem  cells:  purification
                Cell 1:635–645, 2007. doi: 10.1016/j.stem.2007.10.001.  and single-cell assays. Nat Protoc 1:2979–2987, 2006. doi: 10.1038/
             99.  McKenzie  JL,  Takenaka  K,  Gan  OI,  et al:  Low  rhodamine  123   nprot.2006.447.
                retention identifies long-term human hematopoietic stem cells within   122.  Ema H, et al: Quantification of self-renewal capacity in single hema-
                the  Lin-CD34+CD38-  population.  Blood  109:543–545,  2007.  doi:   topoietic  stem  cells  from  normal  and  Lnk-deficient  mice.  Dev  Cell
                10.1182/blood-2006-06-030270.                         8:907–914, 2005. doi: 10.1016/j.devcel.2005.03.019.
            100.  Notta  F,  et al:  Isolation  of  single  human  hematopoietic  stem  cells   123.  Janzen  V,  et al:  Stem-cell  ageing  modified  by  the  cyclin-dependent
                capable of long-term multilineage engraftment. Science 333:218–221,   kinase inhibitor p16INK4a. Nature 443:421–426, 2006. doi: 10.1038/
                2011. doi: 10.1126/science.1201219.                   nature05159.
            101.  Chitteti BR, et al: CD166 regulates human and murine hematopoietic   124.  Walkley CR, Fero ML, Chien WM, et al: Negative cell-cycle regula-
                stem cells and the hematopoietic niche. Blood 124:519–529, 2014. doi:   tors  cooperatively  control  self-renewal  and  differentiation  of  haema-
                10.1182/blood-2014-03-565721.                         topoietic  stem  cells.  Nat  Cell  Biol  7:172–178,  2005.  doi:  10.1038/
            102.  Quarmyne M, et al: Protein tyrosine phosphatase-sigma regulates hema-  ncb1214.
                topoietic stem cell-repopulating capacity. J Clin Invest 125:177–182,   125.  Muramoto GG, et al: Inhibition of aldehyde dehydrogenase expands
                2015. doi: 10.1172/JCI77866.                          hematopoietic  stem  cells  with  radioprotective  capacity.  Stem  Cells
            103.  Schmitt TM,  Zuniga-Pflucker  JC:  Induction  of T  cell  development   28:523–534, 2010. doi: 10.1002/stem.299.
                from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity   126.  Yang L, et al: Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-
                17:749–756, 2002.                                     term  hematopoietic  stem  cells  capable  of  rapidly  reconstituting  and
            104.  Whitlock  CA, Witte  ON:  Long-term  culture  of  B  lymphocytes  and   rescuing  myeloablated  transplant  recipients.  Blood  105:2717–2723,
                their precursors from murine bone marrow. Proc Natl Acad Sci USA   2005. doi: 10.1182/blood-2004-06-2159.
                79:3608–3612, 1982.                               127.  Sieburg HB, et al: The hematopoietic stem compartment consists of
            105.  van Os R, Kamminga LM, de Haan G: Stem cell assays: something old,   a limited number of discrete stem cell subsets. Blood 107:2311–2316,
                something new, something borrowed. Stem Cells 22:1181–1190, 2004.   2006. doi: 10.1182/blood-2005-07-2970.
                doi: 10.1634/stemcells.2004-0095.                 128.  Bryder  D,  Rossi  DJ,  Weissman  IL:  Hematopoietic  stem  cells:  the
            106.  Brandt  JE,  et al:  Ex  vivo  expansion  of  autologous  bone  marrow   paradigmatic tissue-specific stem cell. Am J Pathol 169:338–346, 2006.
                CD34(+) cells with porcine microvascular endothelial cells results in a   doi: 10.2353/ajpath.2006.060312.
                graft capable of rescuing lethally irradiated baboons. Blood 94:106–113,   129.  Dick JE, Magli MC, Huszar D, et al: Introduction of a selectable gene
                1999.                                                 into  primitive  stem  cells  capable  of  long-term  reconstitution  of  the
            107.  Himburg HA, et al: Pleiotrophin regulates the expansion and regen-  hemopoietic system of W/Wv mice. Cell 42:71–79, 1985.
                eration of hematopoietic stem cells. Nat Med 16:475–482, 2010. doi:   130.  Keller G, Snodgrass R: Life span of multipotential hematopoietic stem
                10.1038/nm.2119.                                      cells in vivo. J Exp Med 171:1407–1418, 1990.
            108.  Harrison  DE:  Competitive  repopulation:  a  new  assay  for  long-term   131.  Spangrude  GJ,  Brooks  DM, Tumas  DB:  Long-term  repopulation  of
                stem cell functional capacity. Blood 55:77–81, 1980.  irradiated mice with limiting numbers of purified hematopoietic stem
            109.  Harrison  DE,  Jordan  CT,  Zhong  RK,  et al:  Primitive  hemopoietic   cells: in vivo expansion of stem cell phenotype but not function. Blood
                stem cells: direct assay of most productive populations by competitive   85:1006–1016, 1995.
                repopulation with simple binomial, correlation and covariance calcula-  132.  Zhong RK, Astle CM, Harrison DE: Distinct developmental patterns
                tions. Exp Hematol 21:206–219, 1993.                  of short-term and long-term functioning lymphoid and myeloid precur-
            110.  Yuan R, Astle CM, Chen J, et al: Genetic regulation of hematopoietic   sors defined by competitive limiting dilution analysis in vivo. J Immunol
                stem  cell  exhaustion  during  development  and  growth.  Exp  Hematol   157:138–145, 1996.
                33:243–250, 2005. doi: 10.1016/j.exphem.2004.10.014.  133.  Randall TD, Weissman IL: Phenotypic and functional changes induced
            111.  Szilvassy  SJ,  Humphries  RK,  Lansdorp  PM,  et al:  Quantitative    at the clonal level in hematopoietic stem cells after 5-fluorouracil treat-
                assay for totipotent reconstituting hematopoietic stem cells by a com-  ment. Blood 89:3596–3606, 1997.
                petitive repopulation strategy. Proc Natl Acad Sci USA 87:8736–8740,   134.  Szilvassy  SJ,  Ragland  PL,  Miller  CL,  et al:  The  marrow  homing
                1990.                                                 efficiency of murine hematopoietic stem cells remains constant during
            112.  Szilvassy SJ, Lansdorp PM, Humphries RK, et al: Isolation in a single   ontogeny. Exp Hematol 31:331–338, 2003.
                step of a highly enriched murine hematopoietic stem cell population   135.  Muller-Sieburg CE, Sieburg HB: Clonal diversity of the stem cell com-
                with  competitive  long-term  repopulating  ability.  Blood  74:930–939,   partment.  Curr  Opin  Hematol  13:243–248,  2006.  doi:  10.1097/01.
                1989.                                                 moh.0000231421.00407.65.
            113.  Taswell C: Limiting dilution assays for the determination of immuno-  136.  Trentin JJ: Determination of bone marrow stem cell differentiation by
                competent cell frequencies. I. Data analysis. J Immunol 126:1614–1619,   stromal hemopoietic inductive microenvironments (HIM). Am J Pathol
                1981.                                                 65:621–628, 1971.
            114.  Jordan CT, Lemischka IR: Clonal and systemic analysis of long-term   137.  Metcalf  D:  Lineage  commitment  and  maturation  in  hematopoietic
                hematopoiesis in the mouse. Genes Dev 4:220–232, 1990.  cells: the case for extrinsic regulation. Blood 92:345–347, 1998. discus-
            115.  Dykstra  B,  et al:  Long-term  propagation  of  distinct  hematopoietic   sion 352.
                differentiation programs in vivo. Cell Stem Cell 1:218–229, 2007. doi:   138.  Moore  KA,  Lemischka  IR:  Stem  cells  and  their  niches.  Science
                10.1016/j.stem.2007.05.015.                           311:1880–1885, 2006. doi: 10.1126/science.1110542.
            116.  Lemischka IR, Raulet DH, Mulligan RC: Developmental potential and   139.  Abkowitz  JL,  et al:  Behavior  of  hematopoietic  stem  cells  in  a  large
                dynamic behavior of hematopoietic stem cells. Cell 45:917–927, 1986.  animal. Proc Natl Acad Sci USA 92:2031–2035, 1995.
   137   138   139   140   141   142   143   144   145   146   147