Page 143 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 143
110.e4 Part II Cellular Basis of Hematology
140. Till JE, McCulloch EA, Siminovitch L: A Stochastic Model of Stem Cell 163. Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate
Proliferation, Based on the Growth of Spleen Colony-Forming Cells. control and signal integration in development. Science 284:770–776,
Proc Natl Acad Sci USA 51:29–36, 1964. 1999.
141. Kirkland MA: A phase space model of hemopoiesis and the concept 164. Hori K, Sen A, Artavanis-Tsakonas S: Notch signaling at a glance.
of stem cell renewal. Exp Hematol 32:511–519, 2004. doi: 10.1016/j. J Cell Sci 126:2135–2140, 2013. doi: 10.1242/jcs.127308.
exphem.2004.02.013. 165. Bray SJ: Notch signalling: a simple pathway becomes complex. Nat Rev
142. Roeder I, et al: Competitive clonal hematopoiesis in mouse chimeras Mol Cell Biol 7:678–689, 2006. doi: 10.1038/nrm2009.
explained by a stochastic model of stem cell organization. Blood 166. Dahlberg A, Delaney C, Bernstein ID: Ex vivo expansion of human
105:609–616, 2005. doi: 10.1182/blood-2004-01-0282. hematopoietic stem and progenitor cells. Blood 117:6083–6090, 2011.
143. Muller-Sieburg CE, Sieburg HB: The GOD of hematopoietic stem doi: 10.1182/blood-2011-01-283606.
cells: a clonal diversity model of the stem cell compartment. Cell Cycle 167. Radtke F, Fasnacht N, Macdonald HR: Notch signaling in the immune
5:394–398, 2006. system. Immunity 32:14–27, 2010. doi: 10.1016/j.immuni.2010.01.004.
144. Morita Y, Ema H, Nakauchi H: Heterogeneity and hierarchy within 168. Varnum-Finney B, Dallas MH, Kato K, et al: Notch target Hes5 ensures
the most primitive hematopoietic stem cell compartment. J Exp Med appropriate Notch induced T- versus B-cell choices in the thymus. Blood
207:1173–1182, 2010. doi: 10.1084/jem.20091318. 111:2615–2620, 2008. doi: 10.1182/blood-2007-03-079855.
145. Challen GA, Boles NC, Chambers SM, et al: Distinct hematopoietic 169. Wendorff AA, et al: Hes1 is a critical but context-dependent
stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem mediator of canonical Notch signaling in lymphocyte development
Cell 6:265–278, 2010. doi: 10.1016/j.stem.2010.02.002. and transformation. Immunity 33:671–684, 2010. doi: 10.1016/j.
146. Muller-Sieburg CE, Cho RH, Karlsson L, et al: Myeloid-biased hema- immuni.2010.11.014.
topoietic stem cells have extensive self-renewal capacity but generate 170. Varnum-Finney B, et al: Notch2 governs the rate of generation of
diminished lymphoid progeny with impaired IL-7 responsiveness. Blood mouse long- and short-term repopulating stem cells. J Clin Invest
103:4111–4118, 2004. doi: 10.1182/blood-2003-10-3448. 121:1207–1216, 2011. doi: 10.1172/JCI43868.
147. Mallaney C, Kothari A, Martens A, et al: Clonal-level responses of 171. Varnum-Finney B, et al: Pluripotent, cytokine-dependent, hematopoi-
functionally distinct hematopoietic stem cells to trophic factors. Exp etic stem cells are immortalized by constitutive Notch1 signaling. Nat
Hematol 42:317–327 e312, 2014. doi: 10.1016/j.exphem.2013.11.015. Med 6:1278–1281, 2000. doi: 10.1038/81390.
148. Muller-Sieburg CE, Cho RH, Thoman M, et al: Deterministic regula- 172. Varnum-Finney B, Brashem-Stein C, Bernstein ID: Combined effects
tion of hematopoietic stem cell self-renewal and differentiation. Blood of Notch signaling and cytokines induce a multiple log increase in
100:1302–1309, 2002. precursors with lymphoid and myeloid reconstituting ability. Blood
149. Benz C, et al: Hematopoietic stem cell subtypes expand differentially 101:1784–1789, 2003. doi: 10.1182/blood-2002-06-1862.
during development and display distinct lymphopoietic programs. Cell 173. Carlesso N, Aster JC, Sklar J, et al: Notch1-induced delay of human
Stem Cell 10:273–283, 2012. doi: 10.1016/j.stem.2012.02.007. hematopoietic progenitor cell differentiation is associated with altered
150. Gerrits A, et al: Cellular barcoding tool for clonal analysis in the cell cycle kinetics. Blood 93:838–848, 1999.
hematopoietic system. Blood 115:2610–2618, 2010. doi: 10.1182/ 174. Karanu FN, et al: The notch ligand jagged-1 represents a novel growth
blood-2009-06-229757. factor of human hematopoietic stem cells. J Exp Med 192:1365–1372,
151. Naik SH, et al: Diverse and heritable lineage imprinting of early hae- 2000.
matopoietic progenitors. Nature 496:229–232, 2013. doi: 10.1038/ 175. Calvi LM, et al: Osteoblastic cells regulate the haematopoietic stem cell
nature12013. niche. Nature 425:841–846, 2003. doi: 10.1038/nature02040.
152. Kay HE: How Many Cell-Generations? Lancet 2:418–419, 1965. 176. Butler JM, et al: Endothelial cells are essential for the self-renewal and
153. Drize NJ, Keller JR, Chertkov JL: Local clonal analysis of the hemato- repopulation of Notch-dependent hematopoietic stem cells. Cell Stem
poietic system shows that multiple small short-living clones maintain Cell 6:251–264, 2010. doi: 10.1016/j.stem.2010.02.001.
life-long hematopoiesis in reconstituted mice. Blood 88:2927–2938, 177. Mancini SJ, et al: Jagged1-dependent Notch signaling is dispensable
1996. for hematopoietic stem cell self-renewal and differentiation. Blood
154. McKenzie JL, Gan OI, Doedens M, et al: Individual stem cells with 105:2340–2342, 2005. doi: 10.1182/blood-2004-08-3207.
highly variable proliferation and self-renewal properties comprise 178. Maillard I, et al: Canonical notch signaling is dispensable for the main-
the human hematopoietic stem cell compartment. Nat Immunol tenance of adult hematopoietic stem cells. Cell Stem Cell 2:356–366,
7:1225–1233, 2006. doi: 10.1038/ni1393. 2008. doi: 10.1016/j.stem.2008.02.011.
155. Prchal JT, et al: Clonal stability of blood cell lineages indicated by 179. Delaney C, Varnum-Finney B, Aoyama K, et al: Dose-dependent
X-chromosomal transcriptional polymorphism. J Exp Med 183:561– effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo
567, 1996. marrow repopulating ability of cord blood cells. Blood 106:2693–2699,
156. Wilson A, et al: Hematopoietic stem cells reversibly switch from 2005. doi: 10.1182/blood-2005-03-1131.
dormancy to self-renewal during homeostasis and repair. Cell 180. Delaney C, et al: Notch-mediated expansion of human cord blood
135:1118–1129, 2008. doi: 10.1016/j.cell.2008.10.048. progenitor cells capable of rapid myeloid reconstitution. Nat Med
157. Glauche I, et al: Stem cell proliferation and quiescence–two sides of the 16:232–236, 2010. doi: 10.1038/nm.2080.
same coin. PLoS Comput Biol 5:e1000447, 2009. doi: 10.1371/journal. 181. Gutman JA, et al: Single-unit dominance after double-unit umbili-
pcbi.1000447. cal cord blood transplantation coincides with a specific CD8+ T-cell
158. Takizawa H, Regoes RR, Boddupalli CS, et al: Dynamic response against the nonengrafted unit. Blood 115:757–765, 2010. doi:
variation in cycling of hematopoietic stem cells in steady state 10.1182/blood-2009-07-228999.
and inflammation. J Exp Med 208:273–284, 2011. doi: 10.1084/ 182. Clevers H: Wnt/beta-catenin signaling in development and disease. Cell
jem.20101643. 127:469–480, 2006. doi: 10.1016/j.cell.2006.10.018.
159. Busch K, et al: Fundamental properties of unperturbed haematopoiesis 183. Austin TW, Solar GP, Ziegler FC, et al: A role for the Wnt gene family
from stem cells in vivo. Nature 518:542–546, 2015. doi: 10.1038/ in hematopoiesis: expansion of multilineage progenitor cells. Blood
nature14242. 89:3624–3635, 1997.
160. Sun J, et al: Clonal dynamics of native haematopoiesis. Nature 184. Lento W, Congdon K, Voermans C, et al: Wnt signaling in normal and
514:322–327, 2014. doi: 10.1038/nature13824. malignant hematopoiesis. Cold Spring Harb Perspect Biol 5:2013. doi:
161. Visvader JE: Cells of origin in cancer. Nature 469:314–322, 2011. doi: 10.1101/cshperspect.a008011.
10.1038/nature09781. 185. Reya T, et al: A role for Wnt signalling in self-renewal of haematopoietic
162. Morrison SJ, Kimble J: Asymmetric and symmetric stem-cell divi- stem cells. Nature 423:409–414, 2003. doi: 10.1038/nature01593.
sions in development and cancer. Nature 441:1068–1074, 2006. doi: 186. Murdoch B, et al: Wnt-5A augments repopulating capacity and
10.1038/nature04956. primitive hematopoietic development of human blood stem cells in

