Page 143 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 143

110.e4  Part II  Cellular Basis of Hematology


        140.  Till JE, McCulloch EA, Siminovitch L: A Stochastic Model of Stem Cell   163.  Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate
            Proliferation, Based on the Growth of Spleen Colony-Forming Cells.   control and signal integration in development. Science 284:770–776,
            Proc Natl Acad Sci USA 51:29–36, 1964.                1999.
        141.  Kirkland MA: A phase space model of hemopoiesis and the concept   164.  Hori  K,  Sen  A,  Artavanis-Tsakonas  S:  Notch  signaling  at  a  glance.
            of stem cell renewal. Exp Hematol 32:511–519, 2004. doi: 10.1016/j.  J Cell Sci 126:2135–2140, 2013. doi: 10.1242/jcs.127308.
            exphem.2004.02.013.                               165.  Bray SJ: Notch signalling: a simple pathway becomes complex. Nat Rev
        142.  Roeder I, et al: Competitive clonal hematopoiesis in mouse chimeras   Mol Cell Biol 7:678–689, 2006. doi: 10.1038/nrm2009.
            explained  by  a  stochastic  model  of  stem  cell  organization.  Blood   166.  Dahlberg A, Delaney C, Bernstein ID: Ex vivo expansion of human
            105:609–616, 2005. doi: 10.1182/blood-2004-01-0282.   hematopoietic stem and progenitor cells. Blood 117:6083–6090, 2011.
        143.  Muller-Sieburg  CE,  Sieburg  HB: The  GOD  of  hematopoietic  stem   doi: 10.1182/blood-2011-01-283606.
            cells: a clonal diversity model of the stem cell compartment. Cell Cycle   167.  Radtke F, Fasnacht N, Macdonald HR: Notch signaling in the immune
            5:394–398, 2006.                                      system. Immunity 32:14–27, 2010. doi: 10.1016/j.immuni.2010.01.004.
        144.  Morita Y, Ema H, Nakauchi H: Heterogeneity and hierarchy within   168.  Varnum-Finney B, Dallas MH, Kato K, et al: Notch target Hes5 ensures
            the most primitive hematopoietic stem cell compartment. J Exp Med   appropriate Notch induced T- versus B-cell choices in the thymus. Blood
            207:1173–1182, 2010. doi: 10.1084/jem.20091318.       111:2615–2620, 2008. doi: 10.1182/blood-2007-03-079855.
        145.  Challen GA, Boles NC, Chambers SM, et al: Distinct hematopoietic   169.  Wendorff  AA,  et al:  Hes1  is  a  critical  but  context-dependent
            stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem   mediator  of  canonical  Notch  signaling  in  lymphocyte  development
            Cell 6:265–278, 2010. doi: 10.1016/j.stem.2010.02.002.  and  transformation.  Immunity  33:671–684,  2010.  doi:  10.1016/j.
        146.  Muller-Sieburg CE, Cho RH, Karlsson L, et al: Myeloid-biased hema-  immuni.2010.11.014.
            topoietic  stem  cells  have extensive self-renewal  capacity  but  generate   170.  Varnum-Finney  B,  et al:  Notch2  governs  the  rate  of  generation  of
            diminished lymphoid progeny with impaired IL-7 responsiveness. Blood   mouse  long-  and  short-term  repopulating  stem  cells.  J  Clin  Invest
            103:4111–4118, 2004. doi: 10.1182/blood-2003-10-3448.  121:1207–1216, 2011. doi: 10.1172/JCI43868.
        147.  Mallaney  C,  Kothari  A,  Martens  A,  et al:  Clonal-level  responses  of   171.  Varnum-Finney B, et al: Pluripotent, cytokine-dependent, hematopoi-
            functionally distinct hematopoietic stem cells to trophic factors. Exp   etic stem cells are immortalized by constitutive Notch1 signaling. Nat
            Hematol 42:317–327 e312, 2014. doi: 10.1016/j.exphem.2013.11.015.  Med 6:1278–1281, 2000. doi: 10.1038/81390.
        148.  Muller-Sieburg CE, Cho RH, Thoman M, et al: Deterministic regula-  172.  Varnum-Finney B, Brashem-Stein C, Bernstein ID: Combined effects
            tion of hematopoietic stem cell self-renewal and differentiation. Blood   of  Notch  signaling  and  cytokines  induce  a  multiple  log  increase  in
            100:1302–1309, 2002.                                  precursors  with  lymphoid  and  myeloid  reconstituting  ability.  Blood
        149.  Benz C, et al: Hematopoietic stem cell subtypes expand differentially   101:1784–1789, 2003. doi: 10.1182/blood-2002-06-1862.
            during development and display distinct lymphopoietic programs. Cell   173.  Carlesso N, Aster JC, Sklar J, et al: Notch1-induced delay of human
            Stem Cell 10:273–283, 2012. doi: 10.1016/j.stem.2012.02.007.  hematopoietic progenitor cell differentiation is associated with altered
        150.  Gerrits  A,  et al:  Cellular  barcoding  tool  for  clonal  analysis  in  the   cell cycle kinetics. Blood 93:838–848, 1999.
            hematopoietic  system.  Blood  115:2610–2618,  2010.  doi:  10.1182/  174.  Karanu FN, et al: The notch ligand jagged-1 represents a novel growth
            blood-2009-06-229757.                                 factor of human hematopoietic stem cells. J Exp Med 192:1365–1372,
        151.  Naik SH, et al: Diverse and heritable lineage imprinting of early hae-  2000.
            matopoietic  progenitors.  Nature  496:229–232,  2013.  doi:  10.1038/  175.  Calvi LM, et al: Osteoblastic cells regulate the haematopoietic stem cell
            nature12013.                                          niche. Nature 425:841–846, 2003. doi: 10.1038/nature02040.
        152.  Kay HE: How Many Cell-Generations? Lancet 2:418–419, 1965.  176.  Butler JM, et al: Endothelial cells are essential for the self-renewal and
        153.  Drize NJ, Keller JR, Chertkov JL: Local clonal analysis of the hemato-  repopulation of Notch-dependent hematopoietic stem cells. Cell Stem
            poietic system shows that multiple small short-living clones maintain   Cell 6:251–264, 2010. doi: 10.1016/j.stem.2010.02.001.
            life-long  hematopoiesis  in  reconstituted  mice.  Blood  88:2927–2938,   177.  Mancini  SJ,  et al:  Jagged1-dependent  Notch  signaling  is  dispensable
            1996.                                                 for  hematopoietic  stem  cell  self-renewal  and  differentiation.  Blood
        154.  McKenzie JL, Gan OI, Doedens M, et al: Individual stem cells with   105:2340–2342, 2005. doi: 10.1182/blood-2004-08-3207.
            highly  variable  proliferation  and  self-renewal  properties  comprise   178.  Maillard I, et al: Canonical notch signaling is dispensable for the main-
            the  human  hematopoietic  stem  cell  compartment.  Nat  Immunol   tenance of adult hematopoietic stem cells. Cell Stem Cell 2:356–366,
            7:1225–1233, 2006. doi: 10.1038/ni1393.               2008. doi: 10.1016/j.stem.2008.02.011.
        155.  Prchal  JT,  et al:  Clonal  stability  of  blood  cell  lineages  indicated  by   179.  Delaney  C,  Varnum-Finney  B,  Aoyama  K,  et al:  Dose-dependent
            X-chromosomal  transcriptional  polymorphism.  J  Exp  Med  183:561–  effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo
            567, 1996.                                            marrow repopulating ability of cord blood cells. Blood 106:2693–2699,
        156.  Wilson  A,  et al:  Hematopoietic  stem  cells  reversibly  switch  from   2005. doi: 10.1182/blood-2005-03-1131.
            dormancy  to  self-renewal  during  homeostasis  and  repair.  Cell   180.  Delaney  C,  et al:  Notch-mediated  expansion  of  human  cord  blood
            135:1118–1129, 2008. doi: 10.1016/j.cell.2008.10.048.  progenitor  cells  capable  of  rapid  myeloid  reconstitution.  Nat  Med
        157.  Glauche I, et al: Stem cell proliferation and quiescence–two sides of the   16:232–236, 2010. doi: 10.1038/nm.2080.
            same coin. PLoS Comput Biol 5:e1000447, 2009. doi: 10.1371/journal.  181.  Gutman  JA,  et al:  Single-unit  dominance  after  double-unit  umbili-
            pcbi.1000447.                                         cal cord blood transplantation coincides with a specific CD8+ T-cell
        158.  Takizawa  H,  Regoes  RR,  Boddupalli  CS,  et al:  Dynamic   response against the nonengrafted unit. Blood 115:757–765, 2010. doi:
            variation  in  cycling  of  hematopoietic  stem  cells  in  steady  state   10.1182/blood-2009-07-228999.
            and  inflammation.  J  Exp  Med  208:273–284,  2011.  doi:  10.1084/  182.  Clevers H: Wnt/beta-catenin signaling in development and disease. Cell
            jem.20101643.                                         127:469–480, 2006. doi: 10.1016/j.cell.2006.10.018.
        159.  Busch K, et al: Fundamental properties of unperturbed haematopoiesis   183.  Austin TW, Solar GP, Ziegler FC, et al: A role for the Wnt gene family
            from  stem  cells  in  vivo.  Nature  518:542–546,  2015.  doi:  10.1038/  in  hematopoiesis:  expansion  of  multilineage  progenitor  cells.  Blood
            nature14242.                                          89:3624–3635, 1997.
        160.  Sun  J,  et al:  Clonal  dynamics  of  native  haematopoiesis.  Nature   184.  Lento W, Congdon K, Voermans C, et al: Wnt signaling in normal and
            514:322–327, 2014. doi: 10.1038/nature13824.          malignant hematopoiesis. Cold Spring Harb Perspect Biol 5:2013. doi:
        161.  Visvader JE: Cells of origin in cancer. Nature 469:314–322, 2011. doi:   10.1101/cshperspect.a008011.
            10.1038/nature09781.                              185.  Reya T, et al: A role for Wnt signalling in self-renewal of haematopoietic
        162.  Morrison  SJ,  Kimble  J:  Asymmetric  and  symmetric  stem-cell  divi-  stem cells. Nature 423:409–414, 2003. doi: 10.1038/nature01593.
            sions in development and cancer. Nature 441:1068–1074, 2006. doi:   186.  Murdoch  B,  et al:  Wnt-5A  augments  repopulating  capacity  and
            10.1038/nature04956.                                  primitive  hematopoietic  development  of  human  blood  stem  cells  in
   138   139   140   141   142   143   144   145   146   147   148