Page 1778 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1778

1582   Part IX  Cell-Based Therapies


           effector  function  after  T  cell-depleted  allogeneic  hematopoietic  cell   30a.  Gumá M, Angulo A, Vilches C, et al: Imprint of human cytomegalovirus
           transplantation. Blood 113:3875–3884, 2009.           infection on the NK cell receptor repertoire. Blood 104(12):3664–3671,
        20.  Fauriat  C,  Ivarsson  MA,  Ljunggren  HG,  et al:  Education  of  human   2004.
           natural killer cells by activating killer cell immunoglobulin-like receptors.   31.  Foley  B,  Cooley  S,  Verneris  MR,  et al:  Cytomegalovirus  reactivation
           Blood 115:1166–1174, 2010.                            after allogeneic transplantation promotes a lasting increase in educated
        21.  Foley B, Cooley S, Verneris MR, et al: NK cell education after allogeneic   NKG2C+  natural  killer  cells  with  potent  function.  Blood  119:2665–
           transplantation:  dissociation  between  recovery  of  cytokine-producing   2674, 2012.
           and cytotoxic functions. Blood 118:2784–2792, 2011.  32.  Lopez-Verges S, Milush JM, Schwartz BS, et al: Expansion of a unique
        22.  Cooley  S, Trachtenberg  E,  Bergemann TL,  et al:  Donors  with  group   CD57(+)NKG2Chi  natural  killer  cell  subset  during  acute  human
           B  KIR  haplotypes  improve  relapse-free  survival  after  unrelated  hema-  cytomegalovirus infection. Proc Natl Acad Sci USA 108:14725–14732,
           topoietic  cell  transplantation  for  acute  myelogenous  leukemia.  Blood   2011.
           113:726–732, 2009.                                 33.  Lee  J,  Zhang  T,  Hwang  I,  et al:  Epigenetic  Modification  and
        23.  Cooley  S,  Weisdorf  DJ,  Guethlein  LA,  et al:  Donor  selection  for   Antibody-Dependent Expansion of Memory-like NK Cells in Human
           natural killer cell receptor genes leads to superior survival after unrelated   Cytomegalovirus-Infected Individuals. Immunity 42:431–442, 2015.
           transplantation for acute myelogenous leukemia. Blood 116:2411–2419,   34.  Schlums H, Cichocki F, Tesi B, et al: Cytomegalovirus infection drives
           2010.                                                 adaptive epigenetic diversification of NK cells with altered signaling and
        24.  Cooley S, Weisdorf DJ, Guethlein LA, et al: Donor Killer Cell Ig-like   effector function. Immunity 42:443–456, 2015.
           Receptor  B  Haplotypes,  Recipient  HLA-C1,  and  HLA-C  Mismatch   35.  Elmaagacli  AH,  Steckel  NK,  Koldehoff  M,  et al:  Early  human
           Enhance  the  Clinical  Benefit  of  Unrelated  Transplantation  for  Acute   cytomegalovirus  replication  after  transplantation  is  associated  with  a
           Myelogenous Leukemia. J Immunol 192:4592–4600, 2014.  decreased relapse risk: evidence for a putative virus-versus-leukemia effect
        25.  Venstrom JM, Pittari G, Gooley TA, et al: HLA-C-dependent preven-  in acute myeloid leukemia patients. Blood 118:1402–1412, 2011.
           tion of leukemia relapse by donor activating KIR2DS1. N Engl J Med   36.  Green  ML,  Leisenring  WM,  Xie  H,  et al:  CMV  reactivation  after
           367:805–816, 2012.                                    allogeneic HCT and relapse risk: evidence for early protection in acute
        26.  Impola  U, Turpeinen  H,  Alakulppi  N,  et al:  Donor  Haplotype  B  of   myeloid leukemia. Blood 122:1316–1324, 2013.
           NK KIR Receptor Reduces the Relapse Risk in HLA-Identical Sibling   37.  Romee R, Schneider SE, Leong JW, et al: Cytokine activation induces
           Hematopoietic  Stem  Cell  Transplantation  of  AML  Patients.  Front   human memory-like NK cells. Blood 120:4751–4760, 2012.
           Immunol 5:405, 2014.                               37a.  Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al: Successful adoptive
        27.  Delgado  DC,  Hank  JA,  Kolesar  J,  et al:  Genotypes  of  NK  cell  KIR   transfer  and  in  vivo  expansion  of  human  haploidentical  NK  cells  in
           receptors,  their  ligands,  and  Fcgamma  receptors  in  the  response  of   patients with cancer. Blood 105(8):3051–3057, 2005.
           neuroblastoma  patients  to  Hu14.18-IL2  immunotherapy.  Cancer  Res   38.  Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al: Successful adoptive
           70:9554–9561, 2010.                                   transfer  and  in  vivo  expansion  of  human  haploidentical  NK  cells  in
        28.  Oevermann L, Michaelis SU, Mezger M, et al: KIR B haplotype donors   patients with cancer. Blood 105:3051–3057, 2005.
           confer a reduced risk of relapse after haploidentical transplantation in   39.  Bachanova V,  Cooley  S,  Defor TE,  et al:  Clearance  of  acute  myeloid
           children  with  acute  lymphoblastic  leukemia.  Blood  124:2744–2747,   leukemia  by  haploidentical  natural  killer  cells  is  improved  using  IL-2
           2014.                                                 diphtheria toxin fusion protein. Blood 123:3855–3863, 2014.
        29.  Verneris MR, Miller JS: KIR B or not to be? … that is the question for   40.  Shah NN, Baird K, Delbrook CP, et al: Acute GVHD in patients receiv-
           ALL. Blood 124:2623–2624, 2014.                       ing IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell
        30.  Gleason MK, Ross JA, Warlick ED, et al: CD16xCD33 bispecific killer   transplantation. Blood 125:784–792, 2015.
           cell engager (BiKE) activates NK cells against primary MDS and MDSC
           CD33+ targets. Blood 123:3016–3026, 2014.
   1773   1774   1775   1776   1777   1778   1779   1780   1781   1782   1783