Page 1857 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1857

1649.e4  Part X  Transplantation


            (UCBT) Accelerates Engraftment and Improves 100 Day Survival In   microvessels but not homing to bone marrow. Blood 105(2):567–575,
            Myeloablated  Patients  Compared To  a  Registry  Cohort  Undergoing   2005.
            Double Unit UCBT: Results Of a Multicenter Study Of 101 Patients   133.  Robinson  SN,  Simmons  PJ,  Thomas  MW,  et al:  Ex  vivo  fucosyl-
            With Hematologic Malignancies. Blood 122(21):2013.    ation  improves  human  cord  blood  engraftment  in  NOD-SCID
        117.  de Lima M, McNiece I, Robinson SN, et al: Cord-blood engraftment   IL-2Rgamma(null) mice. Exp Hematol 40(6):445–456, 2012.
            with ex vivo mesenchymal-cell coculture. N Engl J Med 367(24):2305–  134.  Somers JA, Brand A, van Hensbergen Y, et al: Double umbilical cord
            2315, 2012.                                           blood transplantation: a study of early engraftment kinetics in leukocyte
        118.  Horwitz ME, Chao NJ, Rizzieri DA, et al: Umbilical cord blood expan-  subsets using HLA-specific monoclonal antibodies. Biol Blood Marrow
            sion with nicotinamide provides long-term multilineage engraftment.     Transplant 19(2):266–273, 2013.
            J Clin Invest 124(7):3121–3128, 2014.             135.  Ruggeri A, Peffault de Latour R, Carmagnat M, et al: Outcomes, infec-
        119.  Wagner  JE,  Brunstein  C,  McKenna  D,  et al:  StemRegenin-1  (SR1)   tions, and immune reconstitution after double cord blood transplanta-
            Expansion  Culture  Abrogates  the  Engraftment  Barrier  Associated  with   tion in patients with high-risk hematological diseases. Transpl Infect Dis
            Umbilical Cord Blood Transplantation (UCBT) 56th American Society of   13(5):456–465, 2011.
            Hematology Annual Meeting; 2014; San Francisco, CA.  136.  Saliba  RM,  Rezvani  K,  Leen  A,  et al:  General  and  Virus-Specific
        120.  Campbell TB, Hangoc G, Liu Y, et al: Inhibition of CD26 in human   Immune  Cell  Reconstitution  Following  Double  Cord  Blood  Trans-
            cord  blood  CD34+  cells  enhances  their  engraftment  of  nonobese   plantation. Biol Blood Marrow Transplant 2015.
            diabetic/severe  combined  immunodeficiency  mice.  Stem  Cells  Dev   137.  Hanley  PJ,  Cruz  CR,  Shpall  EJ,  et al:  Improving  clinical  outcomes
            16(3):347–354, 2007.                                  using adoptively transferred immune cells from umbilical cord blood.
        121.  Christopherson KW, 2nd, Hangoc G, Mantel CR, et al: Modulation   Cytotherapy 12(6):713–720, 2010.
            of hematopoietic stem cell homing and engraftment by CD26. Science   138.  Sun  Q,  Burton  RL,  Pollok  KE,  et al:  CD4(+)  Epstein-Barr  virus-
            305(5686):1000–1003, 2004.                            specific  cytotoxic T-lymphocytes  from  human  umbilical  cord  blood.
        122.  Christopherson  KW,  2nd,  Paganessi  LA,  Napier  S,  et al:  CD26   Cell Immunol 195(2):81–88, 1999.
            inhibition on CD34+ or lineage- human umbilical cord blood donor   139.  Park KD, Marti L, Kurtzberg J, et al: In vitro priming and expansion
            hematopoietic stem cells/hematopoietic progenitor cells improves long-  of cytomegalovirus-specific Th1 and Tc1 T cells from naive cord blood
            term engraftment into NOD/SCID/Beta2null immunodeficient mice.   lymphocytes. Blood 108(5):1770–1773, 2006.
            Stem Cells Dev 16(3):355–360, 2007.               140.  Barker  JN,  Doubrovina  E,  Sauter  C,  et al:  Successful  treatment  of
        123.  Cutler  C,  Multani  P,  Robbins  D,  et al:  Prostaglandin-modulated   EBV-associated posttransplantation lymphoma after cord blood trans-
            umbilical  cord  blood  hematopoietic  stem  cell  transplantation.  Blood   plantation  using  third-party  EBV-specific  cytotoxic  T  lymphocytes.
            122(17):3074–3081, 2013.                              Blood 116(23):5045–5049, 2010.
        124.  Popat U, Mehta RS, Rezvani K, et al: Enforced fucosylation of cord   141.  Hanley PJ, Cruz CR, Savoldo B, et al: Functionally active virus-specific
            blood hematopoietic cells accelerates neutrophil and platelet engraft-  T cells that target CMV, adenovirus, and EBV can be expanded from
            ment after transplantation. Blood Mar 16 2015.        naive T-cell populations in cord blood and will target a range of viral
        125.  Fernandez MN, Regidor C, Cabrera R, et al: Unrelated umbilical cord   epitopes. Blood 114(9):1958–1967, 2009.
            blood transplants in adults: Early recovery of neutrophils by support-  142.  Leen AM, Myers GD, Sili U, et al: Monoculture-derived T lymphocytes
            ive co-transplantation of a low number of highly purified peripheral   specific for multiple viruses expand and produce clinically relevant effects
            blood CD34+ cells from an HLA-haploidentical donor. Exp Hematol   in  immunocompromised  individuals.  Nat  Med  12(10):1160–1166,
            31(6):535–544, 2003.                                  2006.
        126.  Sanchez ME, Ponce DM, Lauer Emily, et al: Double-unit cord blood   143.  Hanley P, Leen A, Gee AP, et al: Multi-Virus-Specific T-Cell Therapy
            (CB) transplantation (DCBT) combined with haplo-identical peripheral   For Patients After Hematopoietic Stem Cell and Cord Blood Transplan-
            blood CD34+ cells (HaploCD34+) is associated with enhanced neutro-  tation. Blood 122(21):2013.
            phil recovery, universal haplo rejection, and frequent pre-engraftment   144.  Micklethwaite KP, Savoldo B, Hanley PJ, et al: Derivation of human
            syndrome. Biol Blood Marrow Transplant 21(2):S43–S44, 2015.  T  lymphocytes  from  cord  blood  and  peripheral  blood  with  antivi-
        127.  Peled T, Landau E, Mandel J, et al: Linear polyamine copper chelator   ral  and  antileukemic  specificity  from  a  single  culture  as  protection
            tetraethylenepentamine augments long-term ex vivo expansion of cord   against  infection  and  relapse  after  stem  cell  transplantation.  Blood
            blood-derived CD34+ cells and increases their engraftment potential   115(13):2695–2703, 2010.
            in NOD/SCID mice. Exp Hematol 32(6):547–555, 2004.  145.  Xing D, Ramsay AG, Gribben JG, et al: Cord blood natural killer cells
        128.  Peled T, Mandel J, Goudsmid RN, et al: Pre-clinical development of   exhibit impaired lytic immunological synapse formation that is reversed
            cord blood-derived progenitor cell graft expanded ex vivo with cytokines   with IL-2 ex vivo expansion. J Immunother 33(7):684–696, 2010.
            and the polyamine copper chelator tetraethylenepentamine. Cytotherapy   146.  Weber  G,  Gerdemann  U,  Caruana  I,  et al:  Generation  of  multi-
            6(4):344–355, 2004.                                   leukemia antigen-specific T cells to enhance the graft-versus-leukemia
        129.  Boitano  AE,  Wang  J,  Romeo  R,  et al:  Aryl  hydrocarbon  receptor   effect after allogeneic stem cell transplant. Leukemia 27(7):1538–1547,
            antagonists promote the expansion of human hematopoietic stem cells.   2013.
            Science 329(5997):1345–1348, 2010.                147.  Shah  N,  Martin-Antonio  B,  Yang  H,  et al:  Antigen  presenting  cell-
        130.  Himburg HA, Muramoto GG, Daher P, et al: Pleiotrophin regulates   mediated  expansion  of  human  umbilical  cord  blood  yields  log-scale
            the expansion and regeneration of hematopoietic stem cells. Nat Med   expansion of natural killer cells with anti-myeloma activity. PLoS ONE
            16(4):475–482, 2010.                                  8(10):e76781, 2013.
        131.  Zhang CC, Kaba M, Iizuka S, et al: Angiopoietin-like 5 and IGFBP2   148.  Parmar S, Liu X, Najjar A, et al: Ex vivo fucosylation of third-party
            stimulate ex vivo expansion of human cord blood hematopoietic stem   human  regulatory  T  cells  enhances  anti-graft-versus-host  disease
            cells as assayed by NOD/SCID transplantation. Blood 111(7):3415–  potency in vivo. Blood 125(9):1502–1506, 2015.
            3423, 2008.
        132.  Hidalgo  A,  Frenette  PS:  Enforced  fucosylation  of  neonatal  CD34+
            cells generates selectin ligands that enhance the initial interactions with
   1852   1853   1854   1855   1856   1857   1858   1859   1860   1861   1862