Page 1341 - Williams Hematology ( PDFDrive )
P. 1341

1316           Part X:  Malignant Myeloid Diseases                                                                                                                              Chapter 85:  Essential Thrombocythemia           1317




                 7.  Landgren O, Goldin LR, Kristinsson SY, et al: Increased risks of polycythemia vera,     40.  Wolanskyj AP, Schwager SM, McClure RF, et al: Essential thrombocythemia beyond
                  essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of   the first decade: Life expectancy, long-term complication rates, and prognostic factors.
                  11,039 patients with myeloproliferative neoplasms in Sweden. Blood 112:2199, 2008.  Mayo Clin Proc 81:159, 2006.
                 8.  Cross NCP: Genetic and epigenetic complexity in myeloproliferative neoplasms. Hema-    41.  Wilkins BS, Erber WN, Bareford D, et al: Bone marrow pathology in essential throm-
                  tology Am Soc Hematol Educ Program 2011:208, 2011.     bocythemia: Interobserver reliability and utility for identifying disease subtypes. Blood
                 9.  Levine RL, Pardanani A, Tefferi A, Gilliland DG: Role of JAK2 in the pathogenesis and   111:60, 2008.
                  therapy of myeloproliferative disorders. Nat Rev Cancer 7:673, 2007.    42.  Campbell PJ, Scott LM, Buck G, et al: Definition of subtypes of essential thrombocy-
                 10.  Witthuhn BA, Quelle FW, Silvennoinen O, et al: JAK2 associates with the erythropoi-  thaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: A
                  etin receptor and is tyrosine phosphorylated and activated following stimulation with   prospective study. Lancet 366:1945, 2005.
                  erythropoietin. Cell 74:227, 1993.                    43.  Vannucchi AM, Antonioli E, Guglielmelli P, et al: Clinical correlates of JAK2V617F
                 11.  Drachman JG, Millett KM, Kaushansky K: Thrombopoietin signal transduction   presence or allele burden in myeloproliferative neoplasms: A critical reappraisal. Leu-
                  requires functional JAK2, not TYK2. J Biol Chem 274:13480, 1999.  kemia 22:1299, 2008.
                 12.  Parganas E, Wang D, Stravopodis D, et al: Jak2 is essential for signaling through a vari-    44.  Rotunno G, Mannarelli C, Guglielmelli P, et al: Impact of calreticulin mutations on clin-
                  ety of cytokine receptors. Cell 93:385, 1998.          ical and hematological phenotype and outcome in essential thrombocythemia. Blood
                 13.  Remy  I, Wilson IA,  Michnick SW:  Erythropoietin receptor activation  by a  ligand-   123:1552, 2014.
                  induced conformation change. Science 283:990, 1999.    45.  Rumi E, Pietra D, Ferretti V, et al: JAK2 or CALR mutation status defines subtypes of
                 14.  Brooks AJ, Dai W, O’Mara ML, et al: Mechanism of activation of protein kinase JAK2 by   essential thrombocythemia with substantially different clinical course and outcomes.
                  the growth hormone receptor. Science 344:1249783, 2014.  Blood 123:1544, 2014.
                 15.  Bandaranayake RM, Ungureanu D, Shan Y, et al: Crystal structures of the JAK2 pseu-    46.  Kiladjian JJ, Rain JD, Bernard JF, et al: Long-term incidence of hematological evolution
                  dokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 19:754, 2012.  in three French prospective studies of hydroxyurea and pipobroman in polycythemia
                 16.  Li J, Kent DG, Chen E, Green AR: Mouse models of myeloproliferative neoplasms: JAK   vera and essential thrombocythemia. Semin Thromb Hemost 32:417, 2006.
                  of all grades. Dis Model Mech 4:311, 2011.            47.  Finazzi G, Caruso V, Marchioli R, et al: Acute leukemia in polycythemia vera: An analy-
                 17.  Beer PA, Campbell PJ, Scott LM, et al: MPL mutations in myeloproliferative disorders:   sis of 1638 patients enrolled in a prospective observational study. Blood 105:2664, 2005.
                  Analysis of the PT-1 cohort. Blood 112:141, 2008.     48.  Berk PD, Goldberg JD, Silverstein MN, et al: Increased incidence of acute leukemia in
                 18.  Vannucchi AM, Antonioli E, Guglielmelli P, et al: Characteristics and clinical correlates   polycythemia vera associated with chlorambucil therapy. N Engl J Med 304:441, 1981.
                  of MPL 515W>L/K mutation in essential thrombocythemia. Blood 112:844, 2008.    49.  Theocharides A, Boissinot M, Girodon F, et al: Leukemic blasts in transformed
                 19.  Staerk J, Lacout C, Sato T, et al: An amphipathic motif at the transmembrane-cytoplasmic   JAK2-V617F-positive myeloproliferative disorders are frequently negative for the
                  junction prevents autonomous activation of the thrombopoietin receptor. Blood 107:   JAK2-V617F mutation. Blood 110:375, 2007.
                  1864, 2006.                                           50.  Andersson PO, Ridell B, Wadenvik H, Kutti J: Leukemic transformation of essential
                 20.  Ding J, Komatsu H, Iida S, et al: The Asn505 mutation of c-MPL gene, which causes   thrombocythemia without previous cytoreductive treatment. Ann Hematol 79:40, 2000.
                  familial essential thrombocythemia, induces autonomous homodimerization of the     51.  Bench AJ, White HE, Foroni L, et al: Molecular diagnosis of the myeloproliferative neo-
                  c-Mpl protein due to strong amino acid polarity. Blood 114:3325, 2009.  plasms: UK guidelines for the detection of JAK2 V617F and other relevant mutations.
                 21.  Pikman Y, Lee BH, Mercher T, et al: MPLW515L is a novel somatic activating mutation   Br J Haematol 160:25, 2013.
                  in myelofibrosis with myeloid metaplasia. PLoS Med 3:e270, 2006.    52.  Griesshammer M, Bangerter M, Sauer T, et al: Aetiology and clinical significance of
                 22.  Oh ST, Simonds EF, Jones C, et al: Novel mutations in the inhibitory adaptor protein   thrombocytosis: Analysis of 732 patients with an elevated platelet count. J Intern Med
                  LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood   245:295, 1999.
                  116:988, 2010.                                        53.  Buss DH, Cashell AW, O’Connor ML, et al: Occurrence, etiology, and clinical signifi-
                 23.  Wang WA, Groenendyk J, Michalak M: Calreticulin signaling in health and disease. Int   cance of extreme thrombocytosis: A study of 280 cases. Am J Med 96:247, 1994.
                  J Biochem Cell Biol 44:842, 2012.                     54.  Skoda R: The genetic basis of myeloproliferative disorders. Hematology Am Soc Hematol
                 24.  Nangalia J, Massie CE, Baxter EJ, et al: Somatic CALR mutations in myeloproliferative   Educ Program 2007:1, 2007.
                  neoplasms with nonmutated JAK2. N Engl J Med 369:2391, 2013.    55.  Harrison CN, Gale RE, Wiestner AC, et al: The activating splice mutation in intron 3 of
                 25.  Klampfl T, Gisslinger H, Harutyunyan AS, et al: Somatic mutations of calreticulin in   the thrombopoietin gene is not found in patients with non-familial essential thrombo-
                  myeloproliferative neoplasms. N Engl J Med 369:2379, 2013.  cythaemia. Br J Haematol 102:1341, 1998.
                 26.  Rampal R, Al-Shahrour F, Abdel-Wahab O, et al: Integrated genomic analysis illustrates     56.  Mead AJ, Rugless MJ, Jacobsen SE, Schuh A: Germline JAK2 mutation in a family with
                  the central role of JAK-STAT pathway activation in myeloproliferative neoplasm patho-  hereditary thrombocytosis. N Engl J Med 366:967, 2012.
                  genesis. Blood 123:e123, 2014.                        57.  Marty C, Saint-Martin C, Pecquet C, et al: Germ-line JAK2 mutations in the kinase
                 27.  Kim E, Abdel-Wahab O: Focus on the epigenome in the myeloproliferative neoplasms.   domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and
                  Hematology Am Soc Hematol Educ Program 2013:538, 2013.  HSP90 inhibitors. Blood 123:1372, 2014.
                 28.  Dawson MA, Bannister AJ, Gottgens B, et al: JAK2 phosphorylates histone H3Y41 and     58.  Beer PA, Erber WN, Campbell PJ, Green AR: How I treat essential thrombocythemia.
                  excludes HP1alpha from chromatin. Nature 461:819, 2009.  Blood 117:1472, 2010.
                 29.  Rinaldi CR, Rinaldi P, Alagia A, et al: Preferential nuclear accumulation of JAK2V617F     59.  Campbell PJ, Bareford D, Erber WN, et al: Reticulin accumulation in essential throm-
                  in CD34+ but not in granulocytic, megakaryocytic, or erythroid cells of patients with   bocythemia: Prognostic significance and relationship to therapy. J Clin Oncol 27:2991,
                  Philadelphia-negative myeloproliferative neoplasia. Blood 116:6023, 2010.  2009.
                 30.  Harrison CN, Campbell PJ, Buck G, et al: Hydroxyurea compared with anagrelide in     60.  Swerdlow SH, Campo E, Harris NL, et al: WHO Classification of Tumours of Haemato-
                  high-risk essential thrombocythemia. N Engl J Med 353:33, 2005.  poietic and Lymphoid Tissues. IARC Press, Lyon, 2008.
                 31.  Cortelazzo S, Finazzi G, Ruggeri M, et al: Hydroxyurea for patients with essential     61.  Michiels JJ, Berneman Z, Schroyens W, et al: Philadelphia (Ph) chromosome-positive
                  thrombocythemia and a high risk of thrombosis. N Engl J Med 332:1132, 1995.  thrombocythemia without features of chronic myeloid leukemia in peripheral blood:
                 32.  Michiels JJ, van Genderen PJ, Lindemans J, van Vliet HH: Erythromelalgic, thrombotic   Natural  history and  diagnostic  differentiation  from  Ph-negative  essential  thrombo-
                  and hemorrhagic manifestations in 50 cases of thrombocythemia. Leuk Lymphoma 22   cythemia. Ann Hematol 83:504, 2004.
                  Suppl 1:47, 1996.                                     62.  Godfrey AL, Chen E, Pagano F, et al: JAK2V617F homozygosity arises commonly and
                 33.  Patel RK, Lea NC, Heneghan MA, et al: Prevalence of the activating JAK2 tyrosine   recurrently in PV and ET, but PV is characterized by expansion of a dominant homozy-
                  kinase mutation V617F in the Budd-Chiari syndrome.  Gastroenterology 130:2031,   gous subclone. Blood 120:2704, 2012.
                  2006.                                                 63.  Godfrey AL, Chen E, Pagano F, et al: Clonal analyses reveal associations of JAK2V617F
                 34.  Passamonti F, Rumi E, Arcaini L, et al: Prognostic factors for thrombosis, myelofibrosis,   homozygosity with hematologic features, age and gender in polycythemia vera and
                  and leukemia in essential thrombocythemia: A study of 605 patients. Haematologica   essential thrombocythemia. Haematologica 98:718, 2013.
                  93:1645, 2008.                                        64.  Olthof SG, Fatrai S, Drayer AL, et al: Downregulation of signal transducer and activa-
                 35.  Campbell PJ, MacLean C, Beer PA, et al: Correlation of blood counts with vascular   tor of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development,
                  complications in essential thrombocythemia: Analysis of the prospective PT1 cohort.   whereas activation of STAT5 drives erythropoiesis. Stem Cells 26:1732, 2008.
                  Blood 120:1409, 2012.                                 65.  Li J, Kent DG, Godfrey AL, et al: JAK2V617F homozygosity drives a phenotypic switch
                 36.  Dahabreh IJ, Zoi K, Giannouli S, et al: Is JAK2 V617F mutation more than a diagnostic   in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood 123:3139,
                  index? A meta-analysis of clinical outcomes in essential thrombocythemia. Leuk Res   2014.
                  33:67, 2009.                                          66.  Chen E, Beer PA, Godfrey AL, et al: Distinct clinical phenotypes associated with
                 37.  Lussana F, Caberlon S, Pagani C, et al: Association of V617F Jak2 mutation with the risk   JAK2V617F reflect differential STAT1 signaling. Cancer Cell 18:524, 2010.
                  of thrombosis among patients with essential thrombocythaemia or idiopathic myelofi-    67.  Plo I, Nakatake M, Malivert L, et al: JAK2 stimulates homologous recombination and
                  brosis: A systematic review. Thromb Res 124:409, 2009.  genetic instability: Potential implication in the heterogeneity of myeloproliferative dis-
                 38.  Campbell PJ, Bareford D, Erber WN, et al: Reticulin accumulation in essential throm-  orders. Blood 112:1402, 2008.
                  bocythemia: Prognostic significance and relationship to therapy. J Clin Oncol 27:2991,     68.  Zhao R, Follows GA, Beer PA, et al: Inhibition of the Bcl-xL deamidation pathway in
                  2009.                                                  myeloproliferative disorders. N Engl J Med 359:2778, 2008.
                 39.  Elliott MA, Tefferi A: Thrombosis and haemorrhage in polycythaemia vera and essen-    69.  Marty C, Lacout C, Droin N, et al: A role for reactive oxygen species in JAK2 V617F
                  tial thrombocythaemia. Br J Haematol 128:275, 2005.    myeloproliferative neoplasm progression. Leukemia 27:2187, 2013.







          Kaushansky_chapter 85_p1307-1318.indd   1316                                                                  9/21/15   11:09 AM
   1336   1337   1338   1339   1340   1341   1342   1343   1344   1345   1346