Page 1918 - Williams Hematology ( PDFDrive )
P. 1918

1892  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1893




                    463.  Kulkarni S, Jackson SP: Platelet factor XIII and calpain negatively regulate integrin alpha     496.  Sudhof TC, Rothman JE: Membrane fusion: Grappling with SNARE and SM proteins.
                     IIbbeta3 adhesive function and thrombus growth. J Biol Chem 279(29):30697–30706, 2004.  Science 323(5913):474–477, 2009.
                    464.  Szasz R, Dale GL: Thrombospondin and fibrinogen bind serotonin-derivatized pro-    497.  Weber T, et al: SNAREpins: Minimal machinery for membrane fusion. Cell 92(6):
                     teins on COAT-platelets. Blood 100(8):2827–2831, 2002.  759–772, 1998.
                    465.  Szasz R, Dale GL: COAT platelets. Curr Opin Hematol 10(5):351–355, 2003.    498.  Bernstein AM, Whiteheart SW: Identification of a cellubrevin/vesicle associated
                    466.  Leask A: TGFbeta, cardiac fibroblasts, and the fibrotic response.  Cardiovasc Res   membrane protein 3 homologue in human platelets. Blood 93(2):571–579, 1999.
                     74(2):207–212, 2007.                                 499.  Graham GJ, Ren Q, Dilks JR, et al: Endobrevin/VAMP-8-dependent dense granule
                    467.  Massague J: TGFbeta in Cancer. Cell 134(2):215–230, 2008.  release mediates thrombus formation in vivo. Blood 114(5):1083–1090, 2009.
                    468.  Rubtsov YP, Rudensky AY: TGFbeta signalling in control of T-cell-mediated self-     500.  Lemons PP, et al: Regulated secretion in platelets: Identification of elements of the
                     reactivity. Nat Rev Immunol 7(6):443–453, 2007.        platelet exocytosis machinery. Blood 90(4):1490–1500, 1997.
                    469.  ten Dijke P, Arthur HM: Extracellular control of TGFbeta signalling in vascular devel-    501.  Polgar J, Chung SH, Reed GL: Vesicle-associated membrane protein 3 (VAMP-3) and
                     opment and disease. Nat Rev Mol Cell Biol 8(11):857–869, 2007.  VAMP-8 are present in human platelets and are required for granule secretion. Blood
                    470.  Sakamaki S, et al: Transforming growth factor-beta1 (TGF-beta1) induces thrombo-  100(3):1081–1083, 2002.
                     poietin from bone marrow stromal cells, which stimulates the expression of TGF- beta     502.  Ren Q, et al: Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release
                     receptor on megakaryocytes and, in turn, renders them susceptible to suppression by   reaction. Mol Biol Cell 18(1):24–33, 2007.
                     TGF-beta itself with high specificity. Blood 94(6):1961–1970, 1999.    503.  Flaumenhaft R, et al: Proteins of the exocytotic core complex mediate platelet alpha-
                    471.  Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the   granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syn-
                     nucleus. Cell 113(6):685–700, 2003.                    taxin 4. J Biol Chem 274(4):2492–2501, 1999.
                    472.  Hoying JB, et al: Transforming growth factor beta1 enhances platelet aggrega-    504.  Polgar J, et al: Phosphorylation of SNAP-23 in activated human platelets. J Biol Chem
                     tion through a non-transcriptional effect on the fibrinogen receptor.  J Biol  Chem   278(45):44369–44376, 2003.
                     274(43):31008–31013, 1999.                           505.  Chen D, et al: Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and
                    473.  Kronemann N, et al: Aggregating human platelets stimulate expression of vascular   syntaxin 2 in dense core granule release. Blood 95(3):921–929, 2000.
                     endothelial growth factor in cultured vascular smooth muscle cells through a syner-    506.  Chen D, et al: Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and
                     gistic effect of transforming growth factor-beta(1) and platelet-derived growth fac-  syntaxin 2 and 4 in lysosome release. Blood 96(5):1782–1788, 2000.
                     tor(AB). Circulation 100(8):855–860, 1999.           507.  Flaumenhaft R, Furie B, Furie BC: Alpha-granule secretion from alpha-toxin perme-
                    474.  Koda Y, et al: Protein kinase C subtypes in tissues derived from neural crest. Brain Res   abilized, MgATP-exposed platelets is induced independently by H+ and Ca2+. J Cell
                     518(1–2):334–336, 1990.                                Physiol 179(1):1–10, 1999.
                    475.  Annes JP, Munger JS, Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci     508.  Lemons PP, Chen D, Whiteheart SW: Molecular mechanisms of platelet exocytosis: Require-
                     116(Pt 2):217–224, 2003.                               ments for alpha-granule release. Biochem Biophys Res Commun 267(3):875–880, 2000.
                    476.  Lawler J, Hynes RO: The structure of human thrombospondin, an adhesive glyco-    509.  Houng A, Polgar J, Reed GL: Munc18-syntaxin complexes and exocytosis in human
                     protein with multiple calcium-binding sites and homologies with several different   platelets. J Biol Chem 278(22):19627–19633, 2003.
                     proteins. J Cell Biol 103:1635.                      510.  Reed GL, Houng AK, Fitzgerald ML: Human platelets contain SNARE proteins and a
                    477.  Schultz-Cherry S, Murphy-Ullrich JE: Thrombospondin causes activation of latent   Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin
                     transforming growth factor- beta secreted by endothelial cells by a novel mechanism.   activation: Implications for platelet secretion. Blood 93(8):2617–2626, 1999.
                     J Cell Biol 1993;122(4):923–932, 1986.               511.  Schraw TD, et al: A role for Sec1/Munc18 proteins in platelet exocytosis. Biochem J
                    478.  Ahamed J, Janczak CA, Wittkowski KM, Coller BS: In vitro and in vivo evidence that   374(Pt 1):207–217, 2003.
                     thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of     512.  Shirakawa R, et al: Munc13–4 is a GTP-Rab27-binding protein regulating dense core
                     platelet-derived TGF-β1. PLoS One 4(8):e6608, 2009.    granule secretion in platelets. J Biol Chem 279(11):10730–10737, 2004.
                    479.  Blakytny R, Ludlow A, Martin GE, et al: Latent TGF-beta1 activation by platelets. J     513.  Shirakawa R, et al: Purification and functional analysis of a Rab27 effector munc 13–4
                     Cell Physiol 199(1):67–76, 2004.                       using a semi-intact platelet dense-granule secretion assay.  Methods Enzymol 403:
                    480.  Yang Z, et al: Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates   778–788, 2005.
                     the phenotype of TGFbeta1-null mice. J Cell Biol 176(6):787–793, 2007.    514.  Vu TK, Hung DT, Wheaton VI, Coughlin SR: Molecular  cloning of a functional
                    481.  Abdelouahed M, et al: Activation of platelet-transforming growth factor beta-1 in the   thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell
                     absence of thrombospondin-1. J Biol Chem 275(24):17933–17936, 2000.  64:1057–1068, 1991.
                    482.  Ahamed J, et al: In vitro and in vivo evidence for shear-induced activation of latent     515.  Feldmann J, et al: Munc13–4 is essential for cytolytic granules fusion and is mutated in
                     transforming growth factor-beta1. Blood 112(9):3650–3660, 2008.  a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115(4):461–473,
                    483.  Crawford SE, et al: Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell   2003.
                     93(7):1159–1170, 1998.                               516.  Neeft M, et al: Munc13–4 is an effector of rab27a and controls secretion of lysosomes
                    484.  Slivka SR, Loskutoff DJ: Platelets stimulate endothelial cells to synthesize type 1 plas-  in hematopoietic cells. Mol Biol Cell 16(2):731–741, 2005.
                     minogen activator inhibitor. Evaluation of the role of transforming growth factor beta.     517.  Jahn R, Fasshauer D: Molecular machines governing exocytosis of synaptic vesicles.
                     Blood 77(5):1013–1019, 1991.                           Nature 490(7419):201–207, 2012.
                    485.  Labelle M, Begum S, Hynes RO: Direct signaling between platelets and cancer cells     518.  Rizo J, Sudhof TC: The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins,
                     induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer   and their accomplices—Guilty as charged? Annu Rev Cell Dev Biol 28:279–308, 2012.
                     Cell 20(5):576–590, 2011.                            519.  Weber T, et al: SNAREpins: Minimal machinery for membrane fusion. Cell 92(6):
                    486.  Meyer A, et al: Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac   759–772, 1998.
                     fibrosis, and systolic dysfunction in a mouse model of pressure overload.  Blood     520.  Bernstein AM, Whiteheart SW: Identification of a cellubrevin/vesicle associated
                     119(4):1064–1074, 2012.                                membrane protein 3 homologue in human platelets. Blood 93(2):571–579, 1999.
                    487.  Wang W, et al: Association between shear stress and platelet-derived transforming     521.  Burkhart JM, et al: Systematic and quantitative comparison of digest efficiency and
                     growth factor-beta1 release and activation in animal models of aortic valve stenosis.   specificity reveals the impact of trypsin quality on MS-based proteomics. J Proteomics
                     Arterioscler Thromb Vasc Biol 34(9):1924–1932, 2014.   75(4):1454–1462, 2012.
                    488.  Lin HY, et al: Expression cloning of the TGF-beta type II receptor, a functional trans-    522.  Graham GJ, et al: Endobrevin/VAMP-8-dependent dense granule release mediates
                     membrane serine/threonine kinase. Cell 68(4):775–785, 1992.  thrombus formation in vivo. Blood 114(5):1083–1090, 2009.
                    489.  Fuhrman B, Brook GJ, Aviram M: Proteins derived from platelet alpha granules mod-    523.  Lemons PP, et al: Regulated secretion in platelets: Identification of elements of the
                     ulate the uptake of oxidized low density lipoprotein by macrophages. Biochim Biophys   platelet exocytosis machinery. Blood 90(4):1490–1500, 1997.
                     Acta 1127(1):15–21, 1992.                            524.  Golebiewska EM, et al: Syntaxin 8 regulates platelet dense granule secretion, aggrega-
                    490.  Heijnen HF, et al: Activated platelets release two types of membrane vesicles: Microve-  tion, and thrombus stability. J Biol Chem 290(3):1536–1545, 2015.
                     sicles by surface shedding and exosomes derived from exocytosis of multivesicular     525.  Flaumenhaft R, et al: Proteins of the exocytotic core complex mediate platelet alpha-
                     bodies and alpha-granules. Blood 94(11):3791–3799, 1999.  granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syn-
                    491.  Janiszewski M, et al: Platelet-derived exosomes of septic individuals possess proap-  taxin 4. J Biol Chem 274(4):2492–2501, 1999.
                     optotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit Care Med     526.  Polgar J, et al: Phosphorylation of SNAP-23 in activated human platelets. J Biol Chem
                     32(3):818–825, 2004.                                   278(45):44369–44376, 2003.
                    492.  Ren Q, Ye S, Whiteheart SW: The platelet release reaction: Just when you thought     527.  Ye S, et al: Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secre-
                     platelet secretion was simple. Curr Opin Hematol 15(5):537–541, 2008.  tion. Blood 120(12):2484–2492, 2012.
                    493.  Tolmachova T, et al: Rab27b regulates number and secretion of platelet dense gran-    528.  Lemons PP, Chen D, Whiteheart SW: Molecular mechanisms of platelet exocyto-
                     ules. Proc Natl Acad Sci U S A 104(14):5872–5877, 2007.  sis: Requirements for alpha-granule release. Biochem Biophys Res Commun 267(3):
                    494.  Shirakawa R, et al: Small GTPase Rab4 regulates Ca2+-induced alpha-granule secre-  875–880, 2000.
                     tion in platelets. J Biol Chem 275(43):33844–33849, 2000.    529.  Karim ZA, et al: IkappaB kinase phosphorylation of SNAP-23 controls platelet secre-
                    495.  Fitzgerald ML, Reed GL: Rab6 is phosphorylated in thrombin-activated platelets by   tion. Blood 121(22):4567–4574, 2013.
                     a protein kinase C-dependent mechanism: Effects on GTP/GDP binding and cellular     530.  Al Hawas R, et al: Munc18b/STXBP2 is required for platelet secretion.  Blood
                     distribution. Biochem J 342(Pt 2):353–360, 1999.       120(12):2493–2500, 2012.







          Kaushansky_chapter 112_p1829-1914.indd   1893                                                                 17/09/15   3:30 pm
   1913   1914   1915   1916   1917   1918   1919   1920   1921   1922   1923