Page 1918 - Williams Hematology ( PDFDrive )
P. 1918
1892 Part XII: Hemostasis and Thrombosis Chapter 112: Platelet Morphology, Biochemistry, and Function 1893
463. Kulkarni S, Jackson SP: Platelet factor XIII and calpain negatively regulate integrin alpha 496. Sudhof TC, Rothman JE: Membrane fusion: Grappling with SNARE and SM proteins.
IIbbeta3 adhesive function and thrombus growth. J Biol Chem 279(29):30697–30706, 2004. Science 323(5913):474–477, 2009.
464. Szasz R, Dale GL: Thrombospondin and fibrinogen bind serotonin-derivatized pro- 497. Weber T, et al: SNAREpins: Minimal machinery for membrane fusion. Cell 92(6):
teins on COAT-platelets. Blood 100(8):2827–2831, 2002. 759–772, 1998.
465. Szasz R, Dale GL: COAT platelets. Curr Opin Hematol 10(5):351–355, 2003. 498. Bernstein AM, Whiteheart SW: Identification of a cellubrevin/vesicle associated
466. Leask A: TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res membrane protein 3 homologue in human platelets. Blood 93(2):571–579, 1999.
74(2):207–212, 2007. 499. Graham GJ, Ren Q, Dilks JR, et al: Endobrevin/VAMP-8-dependent dense granule
467. Massague J: TGFbeta in Cancer. Cell 134(2):215–230, 2008. release mediates thrombus formation in vivo. Blood 114(5):1083–1090, 2009.
468. Rubtsov YP, Rudensky AY: TGFbeta signalling in control of T-cell-mediated self- 500. Lemons PP, et al: Regulated secretion in platelets: Identification of elements of the
reactivity. Nat Rev Immunol 7(6):443–453, 2007. platelet exocytosis machinery. Blood 90(4):1490–1500, 1997.
469. ten Dijke P, Arthur HM: Extracellular control of TGFbeta signalling in vascular devel- 501. Polgar J, Chung SH, Reed GL: Vesicle-associated membrane protein 3 (VAMP-3) and
opment and disease. Nat Rev Mol Cell Biol 8(11):857–869, 2007. VAMP-8 are present in human platelets and are required for granule secretion. Blood
470. Sakamaki S, et al: Transforming growth factor-beta1 (TGF-beta1) induces thrombo- 100(3):1081–1083, 2002.
poietin from bone marrow stromal cells, which stimulates the expression of TGF- beta 502. Ren Q, et al: Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release
receptor on megakaryocytes and, in turn, renders them susceptible to suppression by reaction. Mol Biol Cell 18(1):24–33, 2007.
TGF-beta itself with high specificity. Blood 94(6):1961–1970, 1999. 503. Flaumenhaft R, et al: Proteins of the exocytotic core complex mediate platelet alpha-
471. Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syn-
nucleus. Cell 113(6):685–700, 2003. taxin 4. J Biol Chem 274(4):2492–2501, 1999.
472. Hoying JB, et al: Transforming growth factor beta1 enhances platelet aggrega- 504. Polgar J, et al: Phosphorylation of SNAP-23 in activated human platelets. J Biol Chem
tion through a non-transcriptional effect on the fibrinogen receptor. J Biol Chem 278(45):44369–44376, 2003.
274(43):31008–31013, 1999. 505. Chen D, et al: Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and
473. Kronemann N, et al: Aggregating human platelets stimulate expression of vascular syntaxin 2 in dense core granule release. Blood 95(3):921–929, 2000.
endothelial growth factor in cultured vascular smooth muscle cells through a syner- 506. Chen D, et al: Molecular mechanisms of platelet exocytosis: Role of SNAP-23 and
gistic effect of transforming growth factor-beta(1) and platelet-derived growth fac- syntaxin 2 and 4 in lysosome release. Blood 96(5):1782–1788, 2000.
tor(AB). Circulation 100(8):855–860, 1999. 507. Flaumenhaft R, Furie B, Furie BC: Alpha-granule secretion from alpha-toxin perme-
474. Koda Y, et al: Protein kinase C subtypes in tissues derived from neural crest. Brain Res abilized, MgATP-exposed platelets is induced independently by H+ and Ca2+. J Cell
518(1–2):334–336, 1990. Physiol 179(1):1–10, 1999.
475. Annes JP, Munger JS, Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci 508. Lemons PP, Chen D, Whiteheart SW: Molecular mechanisms of platelet exocytosis: Require-
116(Pt 2):217–224, 2003. ments for alpha-granule release. Biochem Biophys Res Commun 267(3):875–880, 2000.
476. Lawler J, Hynes RO: The structure of human thrombospondin, an adhesive glyco- 509. Houng A, Polgar J, Reed GL: Munc18-syntaxin complexes and exocytosis in human
protein with multiple calcium-binding sites and homologies with several different platelets. J Biol Chem 278(22):19627–19633, 2003.
proteins. J Cell Biol 103:1635. 510. Reed GL, Houng AK, Fitzgerald ML: Human platelets contain SNARE proteins and a
477. Schultz-Cherry S, Murphy-Ullrich JE: Thrombospondin causes activation of latent Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin
transforming growth factor- beta secreted by endothelial cells by a novel mechanism. activation: Implications for platelet secretion. Blood 93(8):2617–2626, 1999.
J Cell Biol 1993;122(4):923–932, 1986. 511. Schraw TD, et al: A role for Sec1/Munc18 proteins in platelet exocytosis. Biochem J
478. Ahamed J, Janczak CA, Wittkowski KM, Coller BS: In vitro and in vivo evidence that 374(Pt 1):207–217, 2003.
thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of 512. Shirakawa R, et al: Munc13–4 is a GTP-Rab27-binding protein regulating dense core
platelet-derived TGF-β1. PLoS One 4(8):e6608, 2009. granule secretion in platelets. J Biol Chem 279(11):10730–10737, 2004.
479. Blakytny R, Ludlow A, Martin GE, et al: Latent TGF-beta1 activation by platelets. J 513. Shirakawa R, et al: Purification and functional analysis of a Rab27 effector munc 13–4
Cell Physiol 199(1):67–76, 2004. using a semi-intact platelet dense-granule secretion assay. Methods Enzymol 403:
480. Yang Z, et al: Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates 778–788, 2005.
the phenotype of TGFbeta1-null mice. J Cell Biol 176(6):787–793, 2007. 514. Vu TK, Hung DT, Wheaton VI, Coughlin SR: Molecular cloning of a functional
481. Abdelouahed M, et al: Activation of platelet-transforming growth factor beta-1 in the thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell
absence of thrombospondin-1. J Biol Chem 275(24):17933–17936, 2000. 64:1057–1068, 1991.
482. Ahamed J, et al: In vitro and in vivo evidence for shear-induced activation of latent 515. Feldmann J, et al: Munc13–4 is essential for cytolytic granules fusion and is mutated in
transforming growth factor-beta1. Blood 112(9):3650–3660, 2008. a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115(4):461–473,
483. Crawford SE, et al: Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 2003.
93(7):1159–1170, 1998. 516. Neeft M, et al: Munc13–4 is an effector of rab27a and controls secretion of lysosomes
484. Slivka SR, Loskutoff DJ: Platelets stimulate endothelial cells to synthesize type 1 plas- in hematopoietic cells. Mol Biol Cell 16(2):731–741, 2005.
minogen activator inhibitor. Evaluation of the role of transforming growth factor beta. 517. Jahn R, Fasshauer D: Molecular machines governing exocytosis of synaptic vesicles.
Blood 77(5):1013–1019, 1991. Nature 490(7419):201–207, 2012.
485. Labelle M, Begum S, Hynes RO: Direct signaling between platelets and cancer cells 518. Rizo J, Sudhof TC: The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins,
induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer and their accomplices—Guilty as charged? Annu Rev Cell Dev Biol 28:279–308, 2012.
Cell 20(5):576–590, 2011. 519. Weber T, et al: SNAREpins: Minimal machinery for membrane fusion. Cell 92(6):
486. Meyer A, et al: Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac 759–772, 1998.
fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood 520. Bernstein AM, Whiteheart SW: Identification of a cellubrevin/vesicle associated
119(4):1064–1074, 2012. membrane protein 3 homologue in human platelets. Blood 93(2):571–579, 1999.
487. Wang W, et al: Association between shear stress and platelet-derived transforming 521. Burkhart JM, et al: Systematic and quantitative comparison of digest efficiency and
growth factor-beta1 release and activation in animal models of aortic valve stenosis. specificity reveals the impact of trypsin quality on MS-based proteomics. J Proteomics
Arterioscler Thromb Vasc Biol 34(9):1924–1932, 2014. 75(4):1454–1462, 2012.
488. Lin HY, et al: Expression cloning of the TGF-beta type II receptor, a functional trans- 522. Graham GJ, et al: Endobrevin/VAMP-8-dependent dense granule release mediates
membrane serine/threonine kinase. Cell 68(4):775–785, 1992. thrombus formation in vivo. Blood 114(5):1083–1090, 2009.
489. Fuhrman B, Brook GJ, Aviram M: Proteins derived from platelet alpha granules mod- 523. Lemons PP, et al: Regulated secretion in platelets: Identification of elements of the
ulate the uptake of oxidized low density lipoprotein by macrophages. Biochim Biophys platelet exocytosis machinery. Blood 90(4):1490–1500, 1997.
Acta 1127(1):15–21, 1992. 524. Golebiewska EM, et al: Syntaxin 8 regulates platelet dense granule secretion, aggrega-
490. Heijnen HF, et al: Activated platelets release two types of membrane vesicles: Microve- tion, and thrombus stability. J Biol Chem 290(3):1536–1545, 2015.
sicles by surface shedding and exosomes derived from exocytosis of multivesicular 525. Flaumenhaft R, et al: Proteins of the exocytotic core complex mediate platelet alpha-
bodies and alpha-granules. Blood 94(11):3791–3799, 1999. granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syn-
491. Janiszewski M, et al: Platelet-derived exosomes of septic individuals possess proap- taxin 4. J Biol Chem 274(4):2492–2501, 1999.
optotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit Care Med 526. Polgar J, et al: Phosphorylation of SNAP-23 in activated human platelets. J Biol Chem
32(3):818–825, 2004. 278(45):44369–44376, 2003.
492. Ren Q, Ye S, Whiteheart SW: The platelet release reaction: Just when you thought 527. Ye S, et al: Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secre-
platelet secretion was simple. Curr Opin Hematol 15(5):537–541, 2008. tion. Blood 120(12):2484–2492, 2012.
493. Tolmachova T, et al: Rab27b regulates number and secretion of platelet dense gran- 528. Lemons PP, Chen D, Whiteheart SW: Molecular mechanisms of platelet exocyto-
ules. Proc Natl Acad Sci U S A 104(14):5872–5877, 2007. sis: Requirements for alpha-granule release. Biochem Biophys Res Commun 267(3):
494. Shirakawa R, et al: Small GTPase Rab4 regulates Ca2+-induced alpha-granule secre- 875–880, 2000.
tion in platelets. J Biol Chem 275(43):33844–33849, 2000. 529. Karim ZA, et al: IkappaB kinase phosphorylation of SNAP-23 controls platelet secre-
495. Fitzgerald ML, Reed GL: Rab6 is phosphorylated in thrombin-activated platelets by tion. Blood 121(22):4567–4574, 2013.
a protein kinase C-dependent mechanism: Effects on GTP/GDP binding and cellular 530. Al Hawas R, et al: Munc18b/STXBP2 is required for platelet secretion. Blood
distribution. Biochem J 342(Pt 2):353–360, 1999. 120(12):2493–2500, 2012.
Kaushansky_chapter 112_p1829-1914.indd 1893 17/09/15 3:30 pm

