Page 1920 - Williams Hematology ( PDFDrive )
P. 1920

1894  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1895




                    598.  Bartel DP: MicroRNAs: Target recognition and regulatory functions.  Cell 136(2):     632.  Capriotti AL, et al: Proteomic characterization of human platelet-derived microparti-
                     215–233, 2009.                                         cles. Anal Chim Acta 776:57–63, 2013.
                    599.  Nagalla S, et al: Platelet microRNA-mRNA coexpression profiles correlate with plate-    633.  Maurer-Spurej E, et al: The value of proteomics for the diagnosis of a platelet-related
                     let reactivity. Blood 117(19):5189–5197, 2011.         bleeding disorder. Platelets 19(5):342–351, 2008.
                    600.  Edelstein LC, Bray PF: MicroRNAs in platelet production and activation.  Blood     634.  Frobel J, et al: Platelet proteome analysis reveals integrin-dependent aggregation
                     117(20):5289–5296, 2011.                               defects in patients with myelodysplastic syndromes.  Mol Cell Proteomics 12(5):
                    601.  Georgantas RW 3rd, et al: CD34+ hematopoietic stem-progenitor cell microRNA   1272–1280, 2013.
                     expression and function: A circuit diagram of differentiation control. Proc Natl Acad     635.  Snyder EL, et al: Protein changes occurring during storage of platelet concentrates. A
                     Sci U S A 104(8):2750–2755, 2007.                      two-dimensional gel electrophoretic analysis. Transfusion 27(4):335–341, 1987.
                    602.  Lu J, et al: MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte pro-    636.  Thiele T, et al: Profiling of alterations in platelet proteins during storage of platelet
                     genitors. Dev Cell 14(6):843–853, 2008.                concentrates. Transfusion 47(7):1221–1233, 2007.
                    603.  Klusmann JH, et al: MiR-125b-2 is a potential oncomiR on human chromosome 21 in     637.  Thon JN, et al: Comprehensive proteomic analysis of protein changes during platelet
                     megakaryoblastic leukemia. Genes Dev 24(5):478–490, 2010.  storage requires complementary proteomic approaches. Transfusion 48(3):425–435,
                    604.  Kumar MS, et al: Coordinate loss of a microRNA and protein-coding gene cooperate   2008.
                     in the pathogenesis of 5q- syndrome. Blood 118(17):4666–4673, 2011.    638.  Parguina AF, Grigorian-Shamajian L, Agra RM, et al: Proteins involved in platelet
                    605.  Bruchova H, Merkerova M, Prchal JT: Aberrant expression of microRNA in poly-  signaling are differentially regulated in acute coronary syndrome: A proteomic study.
                     cythemia vera. Haematologica 93(7):1009–1016, 2008.    PLoS One 5(10):e13404, 2010.
                    606.  Girardot M, et al: MiR-28 is a thrombopoietin receptor targeting microRNA detected     639.  Londin ER, Hatzimichael E, Loher P, et al: The human platelet: Strong transcriptome
                     in a fraction of myeloproliferative neoplasm patient platelets. Blood 116(3):437–445,   correlations among individuals associate weakly with the platelet proteome.  Biol
                     2010.                                                  Direct 9:3, 2014.
                    607.  Xu X, et al: Systematic analysis of microRNA fingerprints in thrombocythemic plate-    640.  Handagama PJ, Shuman MA, Bainton DF: Incorporation of intravenously injected
                     lets using integrated platforms. Blood 120(17):3575–3585, 2012.  albumin, immunoglobulin G, and fibrinogen in guinea pig megakaryocyte granules. J
                    608.  Zampetaki A, et al: Prospective study on circulating MicroRNAs and risk of myocar-  Clin Invest 1989;84(1):73–82, 2010.
                     dial infarction. J Am Coll Cardiol 60(4):290–299, 2012.    641.  Voora D, et al: Aspirin exposure reveals novel genes associated with platelet function
                    609.  Gidlof O, et al: Platelets activated during myocardial infarction release functional   and cardiovascular events. J Am Coll Cardiol 62(14):1267–1276, 2013.
                     miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression.     642.  Bevers EM, et al: Lipid translocation across the plasma membrane of mammalian
                     Blood 121(19):3908–3917, S1–S26, 2013.                 cells. Biochim Biophys Acta 1439(3):317–330, 1999.
                    610.  Willeit P, et al: Circulating MicroRNAs as novel biomarkers for platelet activation. Circ     643.  Pomorski T, Menon AK: Lipid flippases and their biological functions. Cell Mol Life
                     Res 2013.                                              Sci 63(24):2908–2921, 2006.
                    611.  de Boer HC, et al: Aspirin treatment hampers the use of plasma microRNA-126 as a     644.  Yang H, et al: TMEM16F Forms a Ca(2+)-activated cation channel required for lipid
                     biomarker for the progression of vascular disease. Eur Heart J 34(44):3451–3457, 2013.  scrambling in platelets during blood coagulation. Cell 151(1):111–122, 2012.
                    612.  Garcia A, et al: Extensive analysis of the human platelet proteome by two-dimensional     645.  Barry OP, FitzGerald GA: Mechanisms of cellular activation by platelet microparti-
                     gel electrophoresis and mass spectrometry. Proteomics 4(3):656–668, 2004.  cles. Thromb Haemost 82:794–800, 1999.
                    613.  Garcia A, Senis YA: Platelet Proteomics: Principles, Analysis, and Applications. John     646.  Thiagarajan P, Tait JF: Collagen-induced exposure of anionic phospholipid in platelets
                     Wiley & Sons, Hoboken, NJ, 2011.                       and platelet-derived microparticles. J Biol Chem 266:24302–24307, 1991.
                    614.  Thon JN, Devine DV: Translation of glycoprotein IIIa in stored blood platelets. Trans-    647.  Bouchard BA, et al: Effector cell protease receptor-1, a platelet activation-dependent
                     fusion 47(12):2260–2270, 2007.                         membrane protein, regulates prothrombinase-catalyzed thrombin generation. J Biol
                    615.  Burkhart JM, et al: The first comprehensive and quantitative analysis of human plate-  Chem 272(14):9244–9251, 1997.
                     let protein composition allows the comparative analysis of structural and functional     648.  Enjeti AK, Lincz LF, Seldon M: Microparticles in health and disease. Semin Thromb
                     pathways. Blood 120(15):e73–e82, 2012.                 Hemost 34(7):683–691, 2008.
                    616.  Smith MC, Schwertz H, Zimmerman GA, Weyrich AS: The platelet proteome, in     649.  Hultin MB: Modulation of thrombin-mediated activation of factor VIII:C by calcium
                     Platelets, edited by A Michelson: Academic Press, San Diego, 2012.  ions, phospholipid, and platelets. Blood 66(1):53–58, 1985.
                    617.  Booyse F, Rafelson ME Jr: In vitro incorporation of amino-acids into the contractile     650.  Miyazaki Y, et al: High shear stress can initiate both platelet aggregation and shedding
                     protein of human blood platelets. Nature 215(5098):283–284, 1967.  of procoagulant containing microparticles. Blood 88(9):3456–3464, 1996.
                    618.  Cecchetti L, et al: Megakaryocytes differentially sort mRNAs for matrix metallo-    651.  Nesheim ME, et al: On the existence of platelet receptors for factors V(a) and factor
                     proteinases and their inhibitors into platelets: A mechanism for regulating synthetic   VIII (a). Thromb Haemost 70:80–85, 1993.
                     events. Blood 118(7):1903–1911, 2011.                652.  Piccin A, Murphy WG, Smith OP: Circulating microparticles: Pathophysiology and
                    619.  Hottz ED, Lopes JF, Freitas C, et al: Platelets mediate increased endothelium per-  clinical implications. Blood Rev 21(3):157–171, 2007.
                     meability  in dengue  through  NLRP3-inflammasome  activation.  Blood  122(20):     653.  George JN, et al: Platelet surface glycoproteins. Studies on resting and activated plate-
                     3405–3414, 2013.                                       lets and platelet membrane microparticles in normal subjects, and observations in
                    620.  Martens L, et al: The human platelet proteome mapped by peptide-centric proteomics:   patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest
                     A functional protein profile. Proteomics 5(12):3193–3204, 2005.  78(2):340–348, 1986.
                    621.  Zufferey A, et al: Characterization of the platelet granule proteome: Evidence of the     654.  Siljander P, Carpen O, Lassila R: Platelet-derived microparticles associate with fibrin
                     presence of MHC1 in alpha-granules. J Proteomics 101:130–140, 2014.  during thrombosis. Blood 87(11):4651–4663, 1996.
                    622.  Hernandez-Ruiz L, et al: Organellar proteomics of human platelet dense granules     655.  Dahlback B, Wiedmer T, Sims PJ: Binding of anticoagulant vitamin K-dependent pro-
                     reveals that 14–3-3zeta is a granule protein related to atherosclerosis. J Proteome Res   tein S to platelet-derived microparticles. Biochemistry 31(51):12769–12777, 1992.
                     6(11):4449–4457, 2007.                               656.  Tans G, et al: Comparison of anticoagulant and procoagulant activities of stimulated
                    623.  Senis YA, et al: A comprehensive proteomics and genomics analysis reveals novel   platelets and platelet-derived microparticles. Blood 77(12):2641–2648, 1991.
                     transmembrane proteins in human platelets and mouse megakaryocytes including     657.  Toti F, et al: Scott syndrome, characterized by impaired transmembrane migration
                     G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell   of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited
                     Proteomics 6(3):548–564, 2007.                         disorder. Blood 87(4):1409–1415, 1996.
                    624.  Lewandrowski U, et al: Platelet membrane proteomics: A novel repository for func-    658.  Weiss HJ, Scott syndrome-a disorder of platelet coagulant activity. Semin Hematol
                     tional research. Blood 114(1):e10–e19, 2009.           31(4):312–319, 1994.
                    625.  Maguire PB, et al: Identification of the phosphotyrosine proteome from thrombin     659.  Weiss HJ, Lages B: Platelet prothrombinase activity and intracellular calcium
                     activated platelets. Proteomics 2(6):642–648, 2002.    responses in patients with storage pool deficiency, glycoprotein IIb-IIIa deficiency,
                    626.  Garcia A, et al: A global proteomics approach identifies novel phosphorylated sig-  or impaired platelet coagulant activity—a comparison with Scott syndrome. Blood
                     naling  proteins  in GPVI-activated platelets:  Involvement of  G6f,  a novel  platelet   89(5):1599–1611, 1997.
                     Grb2-binding membrane adapter. Proteomics 6(19):5332–5343, 2006.    660.  Panes O, et al: Human platelets synthesize and express functional tissue factor. Blood
                    627.  Dowal L, et al: Proteomic analysis of palmitoylated platelet proteins.  Blood   109(12):5242–5250, 2007.
                     118(13):e62–e73, 2011.                               661.  Schwertz H, et al: Signal-dependent splicing of tissue factor pre-mRNA modulates the
                    628.  Lewandrowski U, et al: Enhanced N-glycosylation site analysis of sialoglycopeptides   thrombogenicity of human platelets. J Exp MedJ Exp Med 203(11):2433–2440, 2006.
                     by strong cation exchange prefractionation applied to platelet plasma membranes.     662.  Freedman JE, et al: Deficient platelet-derived nitric oxide and enhanced hemostasis in
                     Mol Cell Proteomics 6(11):1933–1941, 2007.             mice lacking the NOSIII gene. Circ Res 84(12):1416–1421, 1999.
                    629.  Coppinger JA, et al: Characterization of the proteins released from activated platelets     663.  Iafrati MD, Vitseva O, Tanriverdi K, et al: Compensatory mechanisms influ-
                     leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood   ence  hemostasis in setting of  eNOS deficiency.  Am J Physiol Heart Circ Physiol
                     103(6):2096–2104, 2004.                                288(4):H1627–H1632, 2005.
                    630.  Piersma SR, et al: Proteomics of the TRAP-induced platelet releasate. J Proteomics     664.  Marjanovic JA, et al: Stimulatory roles of nitric-oxide synthase 3 and guanylyl cyclase
                     72(1):91–109, 2009.                                    in platelet activation. J Biol Chem 280(45):37430–37438, 2005.
                    631.  Garcia BA, et al: The platelet microparticle proteome. J Proteome Res 4(5):1516–1521,     665.  Ozuyaman B, et al: Endothelial nitric oxide synthase plays a minor role in inhibition
                     2005.                                                  of arterial thrombus formation. Thromb Haemost 93(6):1161–1167, 2005.







          Kaushansky_chapter 112_p1829-1914.indd   1895                                                                 17/09/15   3:30 pm
   1915   1916   1917   1918   1919   1920   1921   1922   1923   1924   1925