Page 1920 - Williams Hematology ( PDFDrive )
P. 1920
1894 Part XII: Hemostasis and Thrombosis Chapter 112: Platelet Morphology, Biochemistry, and Function 1895
598. Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell 136(2): 632. Capriotti AL, et al: Proteomic characterization of human platelet-derived microparti-
215–233, 2009. cles. Anal Chim Acta 776:57–63, 2013.
599. Nagalla S, et al: Platelet microRNA-mRNA coexpression profiles correlate with plate- 633. Maurer-Spurej E, et al: The value of proteomics for the diagnosis of a platelet-related
let reactivity. Blood 117(19):5189–5197, 2011. bleeding disorder. Platelets 19(5):342–351, 2008.
600. Edelstein LC, Bray PF: MicroRNAs in platelet production and activation. Blood 634. Frobel J, et al: Platelet proteome analysis reveals integrin-dependent aggregation
117(20):5289–5296, 2011. defects in patients with myelodysplastic syndromes. Mol Cell Proteomics 12(5):
601. Georgantas RW 3rd, et al: CD34+ hematopoietic stem-progenitor cell microRNA 1272–1280, 2013.
expression and function: A circuit diagram of differentiation control. Proc Natl Acad 635. Snyder EL, et al: Protein changes occurring during storage of platelet concentrates. A
Sci U S A 104(8):2750–2755, 2007. two-dimensional gel electrophoretic analysis. Transfusion 27(4):335–341, 1987.
602. Lu J, et al: MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte pro- 636. Thiele T, et al: Profiling of alterations in platelet proteins during storage of platelet
genitors. Dev Cell 14(6):843–853, 2008. concentrates. Transfusion 47(7):1221–1233, 2007.
603. Klusmann JH, et al: MiR-125b-2 is a potential oncomiR on human chromosome 21 in 637. Thon JN, et al: Comprehensive proteomic analysis of protein changes during platelet
megakaryoblastic leukemia. Genes Dev 24(5):478–490, 2010. storage requires complementary proteomic approaches. Transfusion 48(3):425–435,
604. Kumar MS, et al: Coordinate loss of a microRNA and protein-coding gene cooperate 2008.
in the pathogenesis of 5q- syndrome. Blood 118(17):4666–4673, 2011. 638. Parguina AF, Grigorian-Shamajian L, Agra RM, et al: Proteins involved in platelet
605. Bruchova H, Merkerova M, Prchal JT: Aberrant expression of microRNA in poly- signaling are differentially regulated in acute coronary syndrome: A proteomic study.
cythemia vera. Haematologica 93(7):1009–1016, 2008. PLoS One 5(10):e13404, 2010.
606. Girardot M, et al: MiR-28 is a thrombopoietin receptor targeting microRNA detected 639. Londin ER, Hatzimichael E, Loher P, et al: The human platelet: Strong transcriptome
in a fraction of myeloproliferative neoplasm patient platelets. Blood 116(3):437–445, correlations among individuals associate weakly with the platelet proteome. Biol
2010. Direct 9:3, 2014.
607. Xu X, et al: Systematic analysis of microRNA fingerprints in thrombocythemic plate- 640. Handagama PJ, Shuman MA, Bainton DF: Incorporation of intravenously injected
lets using integrated platforms. Blood 120(17):3575–3585, 2012. albumin, immunoglobulin G, and fibrinogen in guinea pig megakaryocyte granules. J
608. Zampetaki A, et al: Prospective study on circulating MicroRNAs and risk of myocar- Clin Invest 1989;84(1):73–82, 2010.
dial infarction. J Am Coll Cardiol 60(4):290–299, 2012. 641. Voora D, et al: Aspirin exposure reveals novel genes associated with platelet function
609. Gidlof O, et al: Platelets activated during myocardial infarction release functional and cardiovascular events. J Am Coll Cardiol 62(14):1267–1276, 2013.
miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. 642. Bevers EM, et al: Lipid translocation across the plasma membrane of mammalian
Blood 121(19):3908–3917, S1–S26, 2013. cells. Biochim Biophys Acta 1439(3):317–330, 1999.
610. Willeit P, et al: Circulating MicroRNAs as novel biomarkers for platelet activation. Circ 643. Pomorski T, Menon AK: Lipid flippases and their biological functions. Cell Mol Life
Res 2013. Sci 63(24):2908–2921, 2006.
611. de Boer HC, et al: Aspirin treatment hampers the use of plasma microRNA-126 as a 644. Yang H, et al: TMEM16F Forms a Ca(2+)-activated cation channel required for lipid
biomarker for the progression of vascular disease. Eur Heart J 34(44):3451–3457, 2013. scrambling in platelets during blood coagulation. Cell 151(1):111–122, 2012.
612. Garcia A, et al: Extensive analysis of the human platelet proteome by two-dimensional 645. Barry OP, FitzGerald GA: Mechanisms of cellular activation by platelet microparti-
gel electrophoresis and mass spectrometry. Proteomics 4(3):656–668, 2004. cles. Thromb Haemost 82:794–800, 1999.
613. Garcia A, Senis YA: Platelet Proteomics: Principles, Analysis, and Applications. John 646. Thiagarajan P, Tait JF: Collagen-induced exposure of anionic phospholipid in platelets
Wiley & Sons, Hoboken, NJ, 2011. and platelet-derived microparticles. J Biol Chem 266:24302–24307, 1991.
614. Thon JN, Devine DV: Translation of glycoprotein IIIa in stored blood platelets. Trans- 647. Bouchard BA, et al: Effector cell protease receptor-1, a platelet activation-dependent
fusion 47(12):2260–2270, 2007. membrane protein, regulates prothrombinase-catalyzed thrombin generation. J Biol
615. Burkhart JM, et al: The first comprehensive and quantitative analysis of human plate- Chem 272(14):9244–9251, 1997.
let protein composition allows the comparative analysis of structural and functional 648. Enjeti AK, Lincz LF, Seldon M: Microparticles in health and disease. Semin Thromb
pathways. Blood 120(15):e73–e82, 2012. Hemost 34(7):683–691, 2008.
616. Smith MC, Schwertz H, Zimmerman GA, Weyrich AS: The platelet proteome, in 649. Hultin MB: Modulation of thrombin-mediated activation of factor VIII:C by calcium
Platelets, edited by A Michelson: Academic Press, San Diego, 2012. ions, phospholipid, and platelets. Blood 66(1):53–58, 1985.
617. Booyse F, Rafelson ME Jr: In vitro incorporation of amino-acids into the contractile 650. Miyazaki Y, et al: High shear stress can initiate both platelet aggregation and shedding
protein of human blood platelets. Nature 215(5098):283–284, 1967. of procoagulant containing microparticles. Blood 88(9):3456–3464, 1996.
618. Cecchetti L, et al: Megakaryocytes differentially sort mRNAs for matrix metallo- 651. Nesheim ME, et al: On the existence of platelet receptors for factors V(a) and factor
proteinases and their inhibitors into platelets: A mechanism for regulating synthetic VIII (a). Thromb Haemost 70:80–85, 1993.
events. Blood 118(7):1903–1911, 2011. 652. Piccin A, Murphy WG, Smith OP: Circulating microparticles: Pathophysiology and
619. Hottz ED, Lopes JF, Freitas C, et al: Platelets mediate increased endothelium per- clinical implications. Blood Rev 21(3):157–171, 2007.
meability in dengue through NLRP3-inflammasome activation. Blood 122(20): 653. George JN, et al: Platelet surface glycoproteins. Studies on resting and activated plate-
3405–3414, 2013. lets and platelet membrane microparticles in normal subjects, and observations in
620. Martens L, et al: The human platelet proteome mapped by peptide-centric proteomics: patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest
A functional protein profile. Proteomics 5(12):3193–3204, 2005. 78(2):340–348, 1986.
621. Zufferey A, et al: Characterization of the platelet granule proteome: Evidence of the 654. Siljander P, Carpen O, Lassila R: Platelet-derived microparticles associate with fibrin
presence of MHC1 in alpha-granules. J Proteomics 101:130–140, 2014. during thrombosis. Blood 87(11):4651–4663, 1996.
622. Hernandez-Ruiz L, et al: Organellar proteomics of human platelet dense granules 655. Dahlback B, Wiedmer T, Sims PJ: Binding of anticoagulant vitamin K-dependent pro-
reveals that 14–3-3zeta is a granule protein related to atherosclerosis. J Proteome Res tein S to platelet-derived microparticles. Biochemistry 31(51):12769–12777, 1992.
6(11):4449–4457, 2007. 656. Tans G, et al: Comparison of anticoagulant and procoagulant activities of stimulated
623. Senis YA, et al: A comprehensive proteomics and genomics analysis reveals novel platelets and platelet-derived microparticles. Blood 77(12):2641–2648, 1991.
transmembrane proteins in human platelets and mouse megakaryocytes including 657. Toti F, et al: Scott syndrome, characterized by impaired transmembrane migration
G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited
Proteomics 6(3):548–564, 2007. disorder. Blood 87(4):1409–1415, 1996.
624. Lewandrowski U, et al: Platelet membrane proteomics: A novel repository for func- 658. Weiss HJ, Scott syndrome-a disorder of platelet coagulant activity. Semin Hematol
tional research. Blood 114(1):e10–e19, 2009. 31(4):312–319, 1994.
625. Maguire PB, et al: Identification of the phosphotyrosine proteome from thrombin 659. Weiss HJ, Lages B: Platelet prothrombinase activity and intracellular calcium
activated platelets. Proteomics 2(6):642–648, 2002. responses in patients with storage pool deficiency, glycoprotein IIb-IIIa deficiency,
626. Garcia A, et al: A global proteomics approach identifies novel phosphorylated sig- or impaired platelet coagulant activity—a comparison with Scott syndrome. Blood
naling proteins in GPVI-activated platelets: Involvement of G6f, a novel platelet 89(5):1599–1611, 1997.
Grb2-binding membrane adapter. Proteomics 6(19):5332–5343, 2006. 660. Panes O, et al: Human platelets synthesize and express functional tissue factor. Blood
627. Dowal L, et al: Proteomic analysis of palmitoylated platelet proteins. Blood 109(12):5242–5250, 2007.
118(13):e62–e73, 2011. 661. Schwertz H, et al: Signal-dependent splicing of tissue factor pre-mRNA modulates the
628. Lewandrowski U, et al: Enhanced N-glycosylation site analysis of sialoglycopeptides thrombogenicity of human platelets. J Exp MedJ Exp Med 203(11):2433–2440, 2006.
by strong cation exchange prefractionation applied to platelet plasma membranes. 662. Freedman JE, et al: Deficient platelet-derived nitric oxide and enhanced hemostasis in
Mol Cell Proteomics 6(11):1933–1941, 2007. mice lacking the NOSIII gene. Circ Res 84(12):1416–1421, 1999.
629. Coppinger JA, et al: Characterization of the proteins released from activated platelets 663. Iafrati MD, Vitseva O, Tanriverdi K, et al: Compensatory mechanisms influ-
leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood ence hemostasis in setting of eNOS deficiency. Am J Physiol Heart Circ Physiol
103(6):2096–2104, 2004. 288(4):H1627–H1632, 2005.
630. Piersma SR, et al: Proteomics of the TRAP-induced platelet releasate. J Proteomics 664. Marjanovic JA, et al: Stimulatory roles of nitric-oxide synthase 3 and guanylyl cyclase
72(1):91–109, 2009. in platelet activation. J Biol Chem 280(45):37430–37438, 2005.
631. Garcia BA, et al: The platelet microparticle proteome. J Proteome Res 4(5):1516–1521, 665. Ozuyaman B, et al: Endothelial nitric oxide synthase plays a minor role in inhibition
2005. of arterial thrombus formation. Thromb Haemost 93(6):1161–1167, 2005.
Kaushansky_chapter 112_p1829-1914.indd 1895 17/09/15 3:30 pm

