Page 1919 - Williams Hematology ( PDFDrive )
P. 1919

1894           Part XII:  Hemostasis and Thrombosis                                                                                                      Chapter 112:  Platelet Morphology, Biochemistry, and Function           1895




                 531.  Houng A, Polgar J, Reed GL: Munc18-syntaxin complexes and exocytosis in human     565.  Johnson AD, et al: Genome-wide meta-analyses identifies seven loci associated with
                   platelets. J Biol Chem 278(22):19627–19633, 2003.      platelet aggregation in response to agonists. Nat Genet 42(7):608–613, 2010.
                 532.  Schraw TD, et al: Platelets from Munc18c heterozygous mice exhibit normal stimu-    566.  Oliver KH, et al: Pro32Pro33 mutations in the integrin beta3 PSI domain result in
                   lus-induced release. Thromb Haemost 92(4):829–837, 2004.  alphaIIbbeta3 priming and enhanced adhesion: Reversal of the hypercoagulability
                 533.  Schraw TD, et al: A role for Sec1/Munc18 proteins in platelet exocytosis. Biochem J   phenotype by the Src inhibitor SKI-606. Mol Pharmacol 85(6):921–931, 2014.
                   374(Pt 1):207–217, 2003.                             567.  Kritzik M, et al: Nucleotide polymorphisms in the alpha2 gene define multiple alle-
                 534.  Sandrock K, et al: Platelet secretion defect in patients with familial hemophagocytic   les that are associated with differences in platelet alpha2 beta1 density. Blood 92(7):
                   lymphohistiocytosis type 5 (FHL-5). Blood 116(26):6148–6150, 2010.  2382–2388, 1998.
                 535.  Suzuki T, et al: The mouse organellar biogenesis mutant buff results from a mutation     568.  Roest M, et al: Platelet adhesion to collagen in healthy volunteers is influenced by
                   in Vps33a, a homologue of yeast vps33 and Drosophila carnation. Proc Natl Acad Sci U   variation of both alpha(2)beta(1) density and von Willebrand factor.  Blood 96(4):
                   S A 100(3):1146–1150, 2003.                            1433–1437, 2000.
                 536.  Urban D, et al: The VPS33B-binding protein VPS16B is required in megakaryocyte     569.  Joutsi-Korhonen L, et al: The low-frequency allele of the platelet collagen signaling
                   and platelet alpha-granule biogenesis. Blood 120(25):5032–5040, 2012.  receptor glycoprotein VI is associated with reduced functional responses and expres-
                 537.  Ye  S,  et  al:  Platelet  secretion  and  hemostasis  require  syntaxin-binding  protein   sion. Blood 101(11):4372–4379, 2003.
                   STXBP5. J Clin Invest 124(10):4517–4528, 2014.       570.  Jones CI, et al: A functional genomics approach reveals novel quantitative trait loci
                 538.  Lillicrap  D,  Syntaxin-binding  protein  5  exocytosis  regulation: Differential  role  in   associated with platelet signaling pathways. Blood 114(7):1405–1416, 2009.
                   endothelial cells and platelets. J Clin Invest 124(10):4231–4233, 2014.    571.  Musunuru K, et al: Association of single nucleotide polymorphisms on chromosome
                 539.  Zhu Q, et al: STXBP5 regulates endothelial exocytosis, plasma VWF levels, and plate-  9p21.3 with platelet reactivity: A potential mechanism for increased vascular disease.
                   let endothelial interactions. Clin Invest 124(10):4503–4516, 2014.  Circulation. Circ Cardiovasc Genet 3(5):445–453, 2010.
                 540.  James DJ, Martin TF: CAPS and Munc13: CATCHRs that SNARE Vesicles.  Front     572.  Edelstein LC, et al: Human genome-wide association and mouse knockout approaches
                   Endocrinol (Lausanne) 4:187, 2013.                     identify platelet supervillin as an inhibitor of thrombus formation under shear stress.
                 541.  Ren Q, et al: Munc13–4 is a limiting factor in the pathway required for platelet granule   Circulation 125(22):2762–2771, 2012.
                   release and hemostasis. Blood 2010;116(6):869–877, 2013.    573.  Gieger C, et al: New gene functions in megakaryopoiesis and platelet formation.
                 542.  Nakamura L, et al: First characterization of platelet secretion defect in patients with   Nature 480(7376):201–208, 2011.
                   familial hemophagocytic lymphohistiocytosis type 3 (FHL-3). Blood 125(2):412–414,     574.  Weyrich AS, et al: Protein synthesis by platelets: Historical and new perspectives. J
                   2015.                                                  Thromb Haemost 7(2):241–246, 2009.
                 543.  Barral DC, et al: Functional redundancy of Rab27 proteins and the pathogenesis of     575.  Denis MM, et al: Escaping the nuclear confines: Signal-dependent pre-mRNA splicing
                   Griscelli syndrome. J Clin Invest 110(2):247–257, 2002.  in anucleate platelets. Cell 122(3):379–391, 2005.
                 544.  Hampson A, O’Connor A, Smolenski A: Synaptotagmin-like protein 4 and Rab8 inter-    576.  Edelstein LC, et al: MicroRNAs in platelet production and activation. J Thromb Hae-
                   act and increase dense granule release in platelets. J Thromb Haemost 11(1):161–168,   most 11 Suppl 1:340–350, 2013.
                   2013.                                                577.  Gnatenko DV, et al:  Transcript profiling of human platelets using  microarray and
                 545.  Janka GE: Familial and acquired hemophagocytic lymphohistiocytosis.  Annu Rev   serial analysis of gene expression. Blood 101(6):2285–2293, 2003.
                   Med 63:233–246, 2012.                                578.  Bugert P, et al: Messenger RNA profiling of human platelets by microarray hybridiza-
                 546.  Lindemann S, et al: Platelets, inflammation and atherosclerosis. J Thromb Haemost 5   tion. Thromb Haemost 90(4):738–748, 2003.
                   (Suppl 1):203–211, 2007.                             579.  Schubert S, Weyrich AS, Rowley JW: A tour through the transcriptional landscape of
                 547.  Bray PF: Platelet glycoprotein polymorphisms as risk factors for thrombosis. Curr   platelets. Blood 124(4):493–502, 2014.
                   Opin Hematol 7(5):284–289, 2000.                     580.  Rowley JW, et al: Genome-wide RNA-seq analysis of human and mouse platelet tran-
                 548.  Deloukas P, et al: Large-scale association analysis identifies new risk loci for coronary   scriptomes. Blood 118(14):e101–e111, 2011.
                   artery disease. Nat Genet 45(1):25–33, 2013.         581.  Bray PF, McKenzie SE, Edelstein LC, et al: The complex transcriptional landscape of
                 549.  Bray PF, Jones CI, Soranzo N, Ouwehand WH: Platelet genomics, in Platelets, edited   the anucleate human platelet. BMC Genomics 14(1):1, 2013.
                   by A Michelson, Editor. Academic Press, San Diego, 2012.    582.  Simon LM, Edelstein LC, Nagalla S, et al: Human platelet microRNA-mRNA net-
                 550.  Albers CA, et al: Exome sequencing identifies NBEAL2 as the causative gene for gray   works associated with age and gender revealed by integrated plateletomics.  Blood
                   platelet syndrome. Nat Genet 43(8):735–737, 2011.      123(16):e37–e45, 2014.
                 551.  Gunay-Aygun M, et al: NBEAL2 is mutated in gray platelet syndrome and is required     583.  Wang Z, et al: The role of mitochondria-derived reactive oxygen species in hyper-
                   for biogenesis of platelet alpha-granules. Nat Genet 43(8):732–734, 2011.  thermia-induced platelet apoptosis. PLoS One 8(9):e75044, 2013.
                 552.  Hulot JS, et al: Cytochrome P450 2C19 loss-of-function polymorphism is a major     584.  Hayashi T, Tanaka S, Hori Y, et al: Role of mitochondria in the maintenance of platelet
                   determinant  of  clopidogrel  responsiveness  in  healthy  subjects.  Blood  108(7):   function during in vitro storage. Transfus Med 21(3):166–174, 2011.
                   2244–2247, 2006.                                     585.  Shim MH, et al: Gene expression profile of primary human CD34+CD38lo cells dif-
                 553.  Shuldiner AR, et al: Association of cytochrome P450 2C19 genotype with the anti-  ferentiating along the megakaryocyte lineage. Exp Hematol 32(7):638–648, 2004.
                   platelet effect and clinical efficacy of clopidogrel therapy.  JAMA 302(8):849–857,       586.  Tenedini E, et al: Gene expression profiling of normal and malignant CD34-derived
                   2009.                                                  megakaryocytic cells. Blood 104(10):3126–3135, 2004.
                 554.  Mega JL, et al: Reduced-function CYP2C19 genotype and risk of adverse clinical out-    587.  Healy AM, et al: Platelet expression profiling and clinical validation of myeloid-re-
                   comes among patients treated with clopidogrel predominantly for PCI: A meta-anal-  lated protein-14 as a novel determinant of cardiovascular events. Circulation 113(19):
                   ysis. JAMA 304(16):1821–1830, 2010.                    2278–2284, 2006.
                 555.  Holmes MV, et al: CYP2C19 genotype, clopidogrel metabolism, platelet function, and     588.  Morrow DA, et al: Myeloid-related protein 8/14 and the risk of cardiovascular death
                   cardiovascular events: A systematic review and meta-analysis. JAMA 306(24):2704–  or myocardial infarction after an acute coronary syndrome in the Pravastatin or Ator-
                   2714, 2011.                                            vastatin Evaluation and Infection Therapy: Thrombolysis in Myocardial Infarction
                 556.  Yee D, et al: Platelet hyperreactivity to submaximal epinephrine: Biologic and clinical   (PROVE IT-TIMI 22) trial. Am Heart J 155(1):49–55, 2008.
                   correlates. 106(8):2723–2729, 2005.                  589.  Gnatenko DV, et al: Platelets express steroidogenic 17beta-hydroxysteroid dehydro-
                 557.  Bray PF, et al: Heritability of platelet function in families with premature coronary   genases. Distinct profiles predict the essential thrombocythemic phenotype. Thromb
                   artery disease. J Thromb Haemost 2007;5(8):1617–1623, 2005.  Haemost 94(2):412–421, 2005.
                 558.  Newman PJ, Derbes RS, Aster RH: The human platelet alloantigens, PlA1 and PlA2,     590.  Gnatenko DV, et al: Class prediction models of thrombocytosis using genetic
                   are associated with a leucine33/proline33 amino acid polymorphism in mem-  biomarkers. Blood 115(1):7–14, 2010.
                   brane glycoprotein IIIa, and are distinguishable by DNA typing. J Clin Invest 83(5):     591.  Sun L, et al: Decreased platelet expression of myosin regulatory light chain polypep-
                   1778–1781, 1989.                                       tide (MYL9) and other genes with platelet dysfunction and CBFA2/RUNX1 mutation:
                 559.  Vijayan KV, et al: Fibrinogen and prothrombin binding is enhanced to the Pro33 iso-  Insights from platelet expression profiling. J Thromb Haemost 5(1):146–154, 2007.
                   form of purified integrin alphaIIbbeta3. J Thromb Haemost 4(4):905–906, 2006.    592.  Kahr WH, et al: Mutations in NBEAL2, encoding a BEACH protein, cause gray plate-
                 560.  Vijayan KV, et al: The Pl(A2) polymorphism of integrin beta(3) enhances outside-in   let syndrome. Nat Genet 43(8):738–740, 2011.
                   signaling and adhesive functions. J Clin Invest 105(6):793–802, 2000.    593.  Nanda N, et al: Platelet endothelial aggregation receptor 1 (PEAR1), a novel epider-
                 561.  Sajid  M, et  al: PlA  polymorphism of  integrin beta 3  differentially  modulates cel-  mal growth factor repeat-containing transmembrane receptor, participates in platelet
                   lular migration on extracellular matrix proteins.  Arterioscler Thromb Vasc Biol   contact-induced activation. J Biol Chem 280(26):24680–24689, 2005.
                   22(12):1984–1989, 2002.                              594.  Kondkar AA, et al: VAMP8/endobrevin is overexpressed in hyperreactive human
                 562.  Vijayan KV, et al: Shear stress augments the enhanced adhesive phenotype of cells   platelets: Suggested role for platelet microRNA.  J Thromb Haemost 8(2):369–378,
                   expressing the Pro33 isoform of integrin beta3. FEBS Lett 540(1–3):41–46, 2003.  2010.
                 563.  Vijayan KV, et al: Enhanced activation of mitogen-activated protein kinase and myo-    595.  Goodall AH, et al: Transcription profiling in human platelets reveals LRRFIP1 as a
                   sin light chain kinase by the Pro33 polymorphism of integrin beta 3. J Biol Chem   novel protein regulating platelet function. Blood 116(22):4646–4656, 2010.
                   278(6):3860–3867, 2003.                              596.  Edelstein LC, Simon LM, Montoya RT, et al: Racial differences in human platelet PAR4
                 564.  Vijayan KV, et al: The Pro33 isoform of integrin beta3 enhances outside-in signaling   reactivity reflect expression of PCTP and miR-376c. Nat Med 19(12):1609–1616, 2013.
                   in human platelets by regulating the activation of serine/threonine phosphatases. J     597.  Carninci P, et al: The transcriptional landscape of the mammalian genome. Science
                   Biol Chem 280(23):21756–21762, 2005.                   309(5740):1559–1563, 2005.







          Kaushansky_chapter 112_p1829-1914.indd   1894                                                                 17/09/15   3:30 pm
   1914   1915   1916   1917   1918   1919   1920   1921   1922   1923   1924