Page 1937 - Williams Hematology ( PDFDrive )
P. 1937
1912 Part XII: Hemostasis and Thrombosis Chapter 112: Platelet Morphology, Biochemistry, and Function 1913
1723. Kuchay SM, et al: Double knockouts reveal that protein tyrosine phosphatase 1B is a 1758. Wong C, et al: CEACAM1 negatively regulates platelet-collagen interactions and
physiological target of calpain-1 in platelets. Mol Cell Biol 27(17):6038–6052, 2007. thrombus growth in vitro and in vivo. Blood 2009;113(8):1818–1828, 2009.
1724. Vinogradova O, et al: Membrane-mediated structural transitions at the cytoplasmic 1759. Mori J, et al: G6b-B inhibits constitutive and agonist-induced signaling by glycopro-
face during integrin activation. Proc Natl Acad Sci U S A 101(12):4094–4099, 2004. tein VI and CLEC-2. J Biol Chem 283(51):35419–35427, 2008.
1725. Haas TA, Plow EF: The cytoplasmic domain of alphaIIb beta3. A ternary complex 1760. Newland SA, et al: The novel inhibitory receptor G6B is expressed on the surface of
of the integrin alpha and beta subunits and a divalent cation. J Biol Chem 271(11): platelets and attenuates platelet function in vitro. Blood 109(11):4806–4809, 2007.
6017–6026, 1996. 1761. Senis YA, et al: A comprehensive proteomics and genomics analysis reveals novel
1726. Hughes PE, et al: Breaking the integrin hinge. A defined structural constraint regu- transmembrane proteins in human platelets and mouse megakaryocytes including
lates integrin signaling. J Biol Chem 271(12):6571–6574, 1996. G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell
1727. Martel V, et al: Conformation, localization, and integrin binding of talin depend on its Proteomics 6(3):548–564, 2007.
interaction with phosphoinositides. J Biol Chem 276(24):21217–21227, 2001. 1762. Kumar G, et al: The membrane immunoglobulin receptor utilizes a Shc/Grb2/hSOS
1728. Di Paolo G, et al: Recruitment and regulation of phosphatidylinositol phosphate complex for activation of the mitogen-activated protein kinase cascade in a B-cell line.
kinase type 1 gamma by the FERM domain of talin. Nature 420(6911):85–89, 2002. Biochem J 307(Pt 1):215–223, 1995.
1729. Ling K, et al: Type I gamma phosphatidylinositol phosphate kinase targets and regu- 1763. Law DA, et al: Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIb-
lates focal adhesions. Nature 420(6911):89–93, 2002. beta3 signalling and platelet function. Nature 401(6755):808–811, 1999.
1730. Calderwood DA, et al: The phosphotyrosine binding-like domain of talin activates 1764. Miranti CK, et al: Identification of a novel integrin signaling pathway involving
integrins. J Biol Chem 277(24):21749–21758, 2002. the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol 8(24):
1731. Akkerman JW, Holmsen H: Interrelationships among platelet responses: Studies on 1289–1299, 1998.
the burst in protein liberation, lactate production and oxygen uptake during platelet 1765. Prasad KS, et al: The platelet CD40L/GP IIb-IIIa axis in atherothrombotic disease.
aggregation and Ca2+ secretion. Blood 57(5):956–966, 1981. Curr Opin Hematol 10(5):356–361, 2003.
1732. Garcia-Alvarez B, et al: Structural determinants of integrin recognition by talin. Mol. 1766. Majerus PW: Arachidonate metabolism in vascular disorders. J Clin Invest 72(5):
Cell 2003;11(1):49–58, 1981. 1521–1525, 1983.
1733. van Joost T, et al: Purpuric contact dermatitis to benzoyl peroxide. J Am Acad Derma- 1767. Moncada S, Whittle BJ: Biological actions of prostacyclin and its pharmacological use
tol 22(2 Pt 2):359–361, 1990. in platelet studies. Adv Exp Med Biol 192:337–358, 1985.
1734. Wegener KL, Campbell ID: Transmembrane and cytoplasmic domains in integrin acti- 1768. Marcus AJ: The role of lipids in platelet function: With particular reference to the
vation and protein-protein interactions (review). Mol Membr Biol 25(5):376–387, 2008. arachidonic acid pathway. J Lipid Res 19:793–826, 1978.
1735. Ling K, et al: Tyrosine phosphorylation of type Igamma phosphatidylinositol phos- 1769. Katsuyama M, et al: Cloning and expression of a cDNA for the human prostacyclin
phate kinase by Src regulates an integrin-talin switch. J Cell Biol 163(6):1339–1349, receptor. FEBS Lett 344(1):74–78, 1994.
2003. 1770. Kunapuli SP, et al: Cloning and expression of a prostaglandin E receptor EP3 subtype
1736. Xing B, Jedsadayanmata A, Lam SC: Localization of an integrin binding site to the C from human erythroleukaemia cells. Biochem J 298 (Pt 2):263–267, 1994.
terminus of talin. J Biol Chem 276(48):44373–44378, 2001. 1771. Feijge MA, et al: Control of platelet activation by cyclic AMP turnover and cyclic
1737. Knezevic I, Leisner TM, Lam SC: Direct binding of the platelet integrin alphaIIbbeta3 nucleotide phosphodiesterase type-3. Biochem Pharmacol 67(8):1559–1567, 2004.
(GPIIb-IIIa) to talin. Evidence that interaction is mediated through the cytoplasmic 1772. Hung SH, et al: New insights from the structure-function analysis of the catalytic
domains of both alphaIIb and beta3. J Biol Chem 271(27):16416–16421, 1996. region of human platelet phosphodiesterase 3A: A role for the unique 44-amino acid
1738. Ma YQ, et al: Kindlin-2 (Mig-2): A co-activator of beta3 integrins. J Cell Biol insert. J Biol Chem 281(39):29236–29244, 2006.
181(3):439–446, 2008. 1773. Sun B, et al: Role of phosphodiesterase type 3A and 3B in regulating platelet and car-
1739. Montanez E, et al: Kindlin-2 controls bidirectional signaling of integrins. Genes Dev diac function using subtype-selective knockout mice. Cell Signal 19(8):1765–1771,
22(10):1325–1330, 2008. 2007.
1740. Moser M, et al: Kindlin-3 is essential for integrin activation and platelet aggregation. 1774. Chapman TM, Goa KL: Cilostazol: A review of its use in intermittent claudication.
Nat Med 14(3):325–330, 2008. Am J Cardiovasc Drugs 3(2):117–138, 2003.
1741. Moser M, et al: Kindlin-3 is essential for integrin activation and platelet aggregation. 1775. Manganello JM, et al: Protein kinase A-mediated phosphorylation of the Galpha13
Nat Med 14(3):325–330, 2008. switch I region alters the Galphabetagamma13-G protein-coupled receptor complex
1742. Kuijpers TW, van de Vijver E, Weterman MA, et al: LAD-1/variant syndrome is and inhibits Rho activation. J Biol Chem 278(1):124–130, 2003.
caused by mutations in FERMT3. Blood 113(19):4740–4746, 2009. 1776. Bodnar RJ, et al: Regulation of glycoprotein Ib-IX-von Willebrand factor interaction
1743. Malinin NL, et al: A point mutation in KINDLIN3 ablates activation of three integrin by cAMP-dependent protein kinase-mediated phosphorylation at Ser 166 of glyco-
subfamilies in humans. Nat Med 15(3):313–318, 2009. protein Ib(beta). J Biol Chem 277(49):47080–47087, 2002.
1744. Mory A, Feigelson SW, Yarali N, et al: Kindlin-3: A new gene involved in the patho- 1777. Cavallini L, et al: Prostacyclin and sodium nitroprusside inhibit the activity of the
genesis of LAD-III. Blood 112(6):2591, 2008. platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J Biol
1745. Svensson L, et al: Leukocyte adhesion deficiency-III is caused by mutations in Chem 271:5545–5551, 1996.
KINDLIN3 affecting integrin activation. Nat Med 15(3):306–312, 2009. 1778. Nishimura T, et al: Antiplatelet functions of a stable prostacyclin analog, SM-10906
1746. Harburger DS, Bouaouina M, Calderwood DA: Kindlin-1 and -2 directly bind the are exerted by its inhibitory effect on inositol 1,4,5-trisphosphate production and
C-terminal region of beta integrin cytoplasmic tails and exert integrin-specific activa- cytosolic Ca2++ increase in rat platelets stimulated by thrombin. Thromb Res 79:
tion effects. J Biol Chem 284(17):11485–11497, 2009. 307–317, 1995.
1747. Li R, et al: Oligomerization of the integrin alphaIIbbeta3: Roles of the transmembrane 1779. Cook SJ, McCormick F: Inhibition by cAMP of Ras-dependent activation of Raf.
and cytoplasmic domains. Proc Natl Acad Sci U S A 98(22):12462–12467, 2001. Science 262:1069–1072, 1993.
1748. Arias-Salgado EG, et al: Src kinase activation by direct interaction with the integrin 1780. Dumaz N, Marais R: Protein kinase A blocks Raf-1 activity by stimulating 14–3-3
beta cytoplasmic domain. Proc Natl Acad Sci U S A 100(23):13298–13302, 2003. binding and blocking Raf-1 interaction with Ras. J Biol Chem 278(32):29819–29823,
1749. Newman DK: The Y’s that bind: Negative regulators of Src family kinase activity in 2003.
platelets. J Thromb Haemost 7(Suppl 1):195–199, 2009. 1781. Fischer TH, et al: The localization of the cAMP-dependent protein kinase phosphory-
1750. Obergfell A, Eto K, Mocsai A, et al: Coordinate interactions of Csk, Src, and Syk lation site in the platelet rat protein, rap 1B. FEBS Lett 2832:173–176, 1991.
kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton. J Cell 1782. Siess W, Grunberg B: Phosphorylation of rap1B by protein kinase A is not involved in
Biol 157(2):265–275, 2002. platelet inhibition by cyclic AMP. Cell Signal 5(2):209–214, 1993.
1751. Woodside DG, et al: Activation of Syk protein tyrosine kinase through interaction 1783. Lou L, et al: CAMP inhibition of Akt is mediated by activated and phosphorylated
with integrin beta cytoplasmic domains. Curr Biol 11(22):1799–1804, 2001. Rap1b. J Biol Chem 277(36):32799–32806, 2002.
1752. Woodside DG, et al: The N-terminal SH2 domains of Syk and ZAP-70 mediate phos- 1784. Fabre JE, et al: Activation of the murine EP3 receptor for PGE2 inhibits cAMP pro-
photyrosine-independent binding to integrin beta cytoplasmic domains. J Biol Chem duction and promotes platelet aggregation. J Clin Invest 107(5):603–610, 2001.
277(42):39401–39408, 2002. 1785. Shio H, Ramwell P: Effect of prostaglandin E 2 and aspirin on the secondary aggrega-
1753. De Virgilio M, Kiosses WB, Shattil SJ: Proximal, selective, and dynamic interactions tion of human platelets. Nat New Biol 236(63):45–46, 1972.
between integrin alphaIIbbeta3 and protein tyrosine kinases in living cells. J Cell Biol 1786. Gross S, et al: Vascular wall-produced prostaglandin E2 exacerbates arterial thrombo-
2004. sis and atherothrombosis through platelet EP3 receptors. J Exp Med 204(2):311–320,
1754. Falati S, et al: Platelet PECAM-1 inhibits thrombus formation in vivo. Blood 2007.
107(2):535–541, 2006. 1787. Luscher TF, et al: Difference between endothelium-dependent relaxation in arterial
1755. Newman EA: New roles for astrocytes: Regulation of synaptic transmission. Trends and in venous coronary bypass grafts. N Engl J Med 319(8):462–467, 1988.
Neurosci 26(10):536–542, 2003. 1788. Goretski J, Hollocher TC: Trapping of nitric oxide produced during denitrification by
1756. Newman PJ, Newman DK: Signal transduction pathways mediated by PECAM-1: extracellular hemoglobin. J Biol Chem 263(5):2316–2323, 1988.
New roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb 1789. Loscalzo J, Welch G: Nitric oxide and its role in the cardiovascular system. Prog Car-
Vasc Biol 23(6):953–964, 2003. diovasc Dis 38(2):87–104, 1995.
1757. Patil S, Newman DK, Newman PJ: Platelet endothelial cell adhesion molecule-1 1790. Mellion BT, et al: Evidence for the inhibitory role of guanosine 3′, 5′-monophos-
serves as an inhibitory receptor that modulates platelet responses to collagen. Blood phate in ADP-induced human platelet aggregation in the presence of nitric oxide and
97(6):1727–173, 20012. related vasodilators. Blood 57(5):946–955, 1981.
Kaushansky_chapter 112_p1829-1914.indd 1912 17/09/15 3:30 pm

