Page 1937 - Williams Hematology ( PDFDrive )
P. 1937

1912           Part XII:  Hemostasis and Thrombosis                                                                                                      Chapter 112:  Platelet Morphology, Biochemistry, and Function           1913




                 1723.  Kuchay SM, et al: Double knockouts reveal that protein tyrosine phosphatase 1B is a     1758.  Wong C, et al: CEACAM1 negatively regulates platelet-collagen interactions and
                   physiological target of calpain-1 in platelets. Mol Cell Biol 27(17):6038–6052, 2007.  thrombus growth in vitro and in vivo. Blood 2009;113(8):1818–1828, 2009.
                 1724.  Vinogradova O, et al: Membrane-mediated structural transitions at the cytoplasmic     1759.  Mori J, et al: G6b-B inhibits constitutive and agonist-induced signaling by glycopro-
                   face during integrin activation. Proc Natl Acad Sci U S A 101(12):4094–4099, 2004.  tein VI and CLEC-2. J Biol Chem 283(51):35419–35427, 2008.
                 1725.  Haas TA, Plow EF: The cytoplasmic domain of alphaIIb beta3. A ternary complex     1760.  Newland SA, et al: The novel inhibitory receptor G6B is expressed on the surface of
                   of the integrin alpha and beta subunits and a divalent cation. J Biol Chem 271(11):   platelets and attenuates platelet function in vitro. Blood 109(11):4806–4809, 2007.
                   6017–6026, 1996.                                     1761.  Senis YA,  et al: A comprehensive proteomics  and genomics  analysis reveals novel
                 1726.  Hughes PE, et al: Breaking the integrin hinge. A defined structural constraint regu-  transmembrane proteins in human platelets and mouse megakaryocytes including
                   lates integrin signaling. J Biol Chem 271(12):6571–6574, 1996.  G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell
                 1727.  Martel V, et al: Conformation, localization, and integrin binding of talin depend on its   Proteomics 6(3):548–564, 2007.
                   interaction with phosphoinositides. J Biol Chem 276(24):21217–21227, 2001.    1762.  Kumar G, et al: The membrane immunoglobulin receptor utilizes a Shc/Grb2/hSOS
                 1728.  Di Paolo G, et al: Recruitment and regulation of phosphatidylinositol phosphate   complex for activation of the mitogen-activated protein kinase cascade in a B-cell line.
                   kinase type 1 gamma by the FERM domain of talin. Nature 420(6911):85–89, 2002.  Biochem J 307(Pt 1):215–223, 1995.
                 1729.  Ling K, et al: Type I gamma phosphatidylinositol phosphate kinase targets and regu-    1763.  Law DA, et al: Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIb-
                   lates focal adhesions. Nature 420(6911):89–93, 2002.   beta3 signalling and platelet function. Nature 401(6755):808–811, 1999.
                 1730.  Calderwood DA, et al: The phosphotyrosine binding-like domain of talin activates     1764.  Miranti CK, et al: Identification of a novel integrin signaling pathway involving
                   integrins. J Biol Chem 277(24):21749–21758, 2002.      the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol 8(24):
                 1731.  Akkerman JW, Holmsen H: Interrelationships among platelet responses: Studies on   1289–1299, 1998.
                   the burst in protein liberation, lactate production and oxygen uptake during platelet     1765.  Prasad KS, et al: The platelet CD40L/GP IIb-IIIa axis in atherothrombotic disease.
                   aggregation and Ca2+ secretion. Blood 57(5):956–966, 1981.  Curr Opin Hematol 10(5):356–361, 2003.
                 1732.  Garcia-Alvarez B, et al: Structural determinants of integrin recognition by talin. Mol.     1766.  Majerus PW: Arachidonate metabolism in vascular disorders.  J Clin Invest 72(5):
                   Cell 2003;11(1):49–58, 1981.                           1521–1525, 1983.
                 1733.  van Joost T, et al: Purpuric contact dermatitis to benzoyl peroxide. J Am Acad Derma-    1767.  Moncada S, Whittle BJ: Biological actions of prostacyclin and its pharmacological use
                   tol 22(2 Pt 2):359–361, 1990.                          in platelet studies. Adv Exp Med Biol 192:337–358, 1985.
                 1734.  Wegener KL, Campbell ID: Transmembrane and cytoplasmic domains in integrin acti-    1768.  Marcus AJ: The role of lipids in platelet function: With particular reference to the
                   vation and protein-protein interactions (review). Mol Membr Biol 25(5):376–387, 2008.  arachidonic acid pathway. J Lipid Res 19:793–826, 1978.
                 1735.  Ling K, et al: Tyrosine phosphorylation of type Igamma phosphatidylinositol phos-    1769.  Katsuyama M, et al: Cloning and expression of a cDNA for the human prostacyclin
                   phate kinase by Src regulates an integrin-talin switch. J Cell Biol 163(6):1339–1349,   receptor. FEBS Lett 344(1):74–78, 1994.
                   2003.                                                1770.  Kunapuli SP, et al: Cloning and expression of a prostaglandin E receptor EP3 subtype
                 1736.  Xing B, Jedsadayanmata A, Lam SC: Localization of an integrin binding site to the C   from human erythroleukaemia cells. Biochem J 298 (Pt 2):263–267, 1994.
                   terminus of talin. J Biol Chem 276(48):44373–44378, 2001.    1771.  Feijge MA, et al: Control of platelet activation by cyclic AMP turnover and cyclic
                 1737.  Knezevic I, Leisner TM, Lam SC: Direct binding of the platelet integrin alphaIIbbeta3   nucleotide phosphodiesterase type-3. Biochem Pharmacol 67(8):1559–1567, 2004.
                   (GPIIb-IIIa) to talin. Evidence that interaction is mediated through the cytoplasmic     1772.  Hung SH, et al: New insights from the structure-function analysis of the catalytic
                   domains of both alphaIIb and beta3. J Biol Chem 271(27):16416–16421, 1996.  region of human platelet phosphodiesterase 3A: A role for the unique 44-amino acid
                 1738.  Ma YQ, et al: Kindlin-2 (Mig-2):  A co-activator of beta3 integrins.  J Cell Biol   insert. J Biol Chem 281(39):29236–29244, 2006.
                   181(3):439–446, 2008.                                1773.  Sun B, et al: Role of phosphodiesterase type 3A and 3B in regulating platelet and car-
                 1739.  Montanez E, et al: Kindlin-2 controls bidirectional signaling of integrins. Genes Dev   diac function using subtype-selective knockout mice. Cell Signal 19(8):1765–1771,
                   22(10):1325–1330, 2008.                                2007.
                 1740.  Moser M, et al: Kindlin-3 is essential for integrin activation and platelet aggregation.     1774.  Chapman TM, Goa KL: Cilostazol: A review of its use in intermittent claudication.
                   Nat Med 14(3):325–330, 2008.                           Am J Cardiovasc Drugs 3(2):117–138, 2003.
                 1741.  Moser M, et al: Kindlin-3 is essential for integrin activation and platelet aggregation.     1775.  Manganello JM, et al: Protein kinase A-mediated phosphorylation of the Galpha13
                   Nat Med 14(3):325–330, 2008.                           switch I region alters the Galphabetagamma13-G protein-coupled receptor complex
                 1742.  Kuijpers TW, van de Vijver E, Weterman MA, et al: LAD-1/variant syndrome is   and inhibits Rho activation. J Biol Chem 278(1):124–130, 2003.
                   caused by mutations in FERMT3. Blood 113(19):4740–4746, 2009.    1776.  Bodnar RJ, et al: Regulation of glycoprotein Ib-IX-von Willebrand factor interaction
                 1743.  Malinin NL, et al: A point mutation in KINDLIN3 ablates activation of three integrin   by cAMP-dependent protein kinase-mediated phosphorylation at Ser 166 of glyco-
                   subfamilies in humans. Nat Med 15(3):313–318, 2009.    protein Ib(beta). J Biol Chem 277(49):47080–47087, 2002.
                 1744.  Mory A, Feigelson SW, Yarali N, et al: Kindlin-3: A new gene involved in the patho-    1777.  Cavallini L, et al: Prostacyclin and sodium nitroprusside inhibit the activity of the
                   genesis of LAD-III. Blood 112(6):2591, 2008.           platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J Biol
                 1745.  Svensson L, et al: Leukocyte adhesion deficiency-III is caused by mutations in     Chem 271:5545–5551, 1996.
                   KINDLIN3 affecting integrin activation. Nat Med 15(3):306–312, 2009.    1778.  Nishimura T, et al: Antiplatelet functions of a stable prostacyclin analog, SM-10906
                 1746.  Harburger DS, Bouaouina M, Calderwood DA: Kindlin-1 and -2 directly bind the   are  exerted  by  its  inhibitory  effect  on  inositol  1,4,5-trisphosphate  production  and
                   C-terminal region of beta integrin cytoplasmic tails and exert integrin-specific activa-  cytosolic  Ca2++  increase  in  rat  platelets  stimulated  by  thrombin.  Thromb Res  79:
                   tion effects. J Biol Chem 284(17):11485–11497, 2009.   307–317, 1995.
                 1747.  Li R, et al: Oligomerization of the integrin alphaIIbbeta3: Roles of the transmembrane     1779.  Cook  SJ,  McCormick  F:  Inhibition  by  cAMP  of  Ras-dependent  activation  of  Raf.
                   and cytoplasmic domains. Proc Natl Acad Sci U S A 98(22):12462–12467, 2001.  Science 262:1069–1072, 1993.
                 1748.  Arias-Salgado EG, et al: Src kinase activation by direct interaction with the integrin     1780.  Dumaz N, Marais R: Protein kinase A blocks Raf-1 activity by stimulating 14–3-3
                   beta cytoplasmic domain. Proc Natl Acad Sci U S A 100(23):13298–13302, 2003.  binding and blocking Raf-1 interaction with Ras. J Biol Chem 278(32):29819–29823,
                 1749.  Newman DK: The Y’s that bind: Negative regulators of Src family kinase activity in   2003.
                   platelets. J Thromb Haemost 7(Suppl 1):195–199, 2009.    1781.  Fischer TH, et al: The localization of the cAMP-dependent protein kinase phosphory-
                 1750.  Obergfell A, Eto K, Mocsai A, et al: Coordinate interactions of Csk, Src, and Syk   lation site in the platelet rat protein, rap 1B. FEBS Lett 2832:173–176, 1991.
                   kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton. J Cell     1782.  Siess W, Grunberg B: Phosphorylation of rap1B by protein kinase A is not involved in
                   Biol 157(2):265–275, 2002.                             platelet inhibition by cyclic AMP. Cell Signal 5(2):209–214, 1993.
                 1751.  Woodside DG, et al: Activation of Syk protein tyrosine kinase through interaction     1783.  Lou L, et al: CAMP inhibition of Akt is mediated by activated and phosphorylated
                   with integrin beta cytoplasmic domains. Curr Biol 11(22):1799–1804, 2001.  Rap1b. J Biol Chem 277(36):32799–32806, 2002.
                 1752.  Woodside DG, et al: The N-terminal SH2 domains of Syk and ZAP-70 mediate phos-    1784.  Fabre JE, et al: Activation of the murine EP3 receptor for PGE2 inhibits cAMP pro-
                   photyrosine-independent binding to integrin beta cytoplasmic domains. J Biol Chem   duction and promotes platelet aggregation. J Clin Invest 107(5):603–610, 2001.
                   277(42):39401–39408, 2002.                           1785.  Shio H, Ramwell P: Effect of prostaglandin E 2 and aspirin on the secondary aggrega-
                 1753.  De Virgilio M, Kiosses WB, Shattil SJ: Proximal, selective, and dynamic interactions   tion of human platelets. Nat New Biol 236(63):45–46, 1972.
                   between integrin alphaIIbbeta3 and protein tyrosine kinases in living cells. J Cell Biol     1786.  Gross S, et al: Vascular wall-produced prostaglandin E2 exacerbates arterial thrombo-
                   2004.                                                  sis and atherothrombosis through platelet EP3 receptors. J Exp Med 204(2):311–320,
                 1754.  Falati S, et al: Platelet PECAM-1 inhibits thrombus formation  in vivo.  Blood   2007.
                   107(2):535–541, 2006.                                1787.  Luscher TF, et al: Difference between endothelium-dependent relaxation in arterial
                 1755.  Newman EA: New roles for astrocytes: Regulation of synaptic transmission. Trends   and in venous coronary bypass grafts. N Engl J Med 319(8):462–467, 1988.
                   Neurosci 26(10):536–542, 2003.                       1788.  Goretski J, Hollocher TC: Trapping of nitric oxide produced during denitrification by
                 1756.  Newman PJ, Newman DK: Signal transduction pathways mediated by PECAM-1:   extracellular hemoglobin. J Biol Chem 263(5):2316–2323, 1988.
                   New roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb     1789.  Loscalzo J, Welch G: Nitric oxide and its role in the cardiovascular system. Prog Car-
                   Vasc Biol 23(6):953–964, 2003.                         diovasc Dis 38(2):87–104, 1995.
                 1757.  Patil S, Newman DK, Newman PJ: Platelet endothelial cell adhesion molecule-1     1790.  Mellion BT, et al: Evidence for the inhibitory role of guanosine 3′, 5′-monophos-
                   serves as an inhibitory receptor that modulates platelet responses to collagen. Blood   phate in ADP-induced human platelet aggregation in the presence of nitric oxide and
                   97(6):1727–173, 20012.                                 related vasodilators. Blood 57(5):946–955, 1981.







          Kaushansky_chapter 112_p1829-1914.indd   1912                                                                 17/09/15   3:30 pm
   1932   1933   1934   1935   1936   1937   1938   1939   1940   1941   1942