Page 1938 - Williams Hematology ( PDFDrive )
P. 1938

1912  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1913




                    1791.  Radomski MW, Palmer RM, Moncada S: Modulation of platelet aggregation by an     1809.  Smyth SS, Woulfe DS, Weitz JI, et al: G-protein-coupled receptors as signaling targets
                     L-arginine-nitric oxide pathway. Trends Pharmacol Sci 12(3):87–88, 1991.  for antiplatelet therapy. Arterioscler Thromb Vasc Biol 29(4):449–457, 2009.
                    1792.  Wang GR, et al: Mechanism of platelet inhibition by nitric oxide: In vivo phosphory-    1810.  Zhang C, Srinivasan Y, Arlow DH, et al: High-resolution crystal structure of human
                     lation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl   protease-activated receptor 1. Nature 492(7429):387–392, 2012.
                     Acad Sci U S A 95(9):4888–4893, 1998.                1811.  Pollard TD, Actin. Curr Opin Cell Biol 2:33–40, 1990.
                    1793.  Massberg S, et al: Increased adhesion and aggregation of platelets lacking cyclic gua-    1812.  Vandekerckhove J: Actin-binding proteins. Curr Opin Cell Biol 2:41–50, 1990.
                     nosine 3′,5′-monophosphate kinase I. J Exp Med 189(8):1255–1264, 1999.    1813.  Weeds AG, et al: Preparation and characterization of pig plasma and platelet gelsolins.
                    1794.  Aszodi A, et al: The vasodilator-stimulated phosphoprotein (VASP) is involved in   Eur J Biochem 161:69–76, 1986.
                     cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but     1814.  Smillie LB: Structure and function of tropomyosins from muscle and non-muscle.
                     is dispensable for smooth muscle function. EMBO J 18(1):37–48, 1999.  Trends Biochem Sci 4:151, 1979.
                    1795.  Butt E, et al: CAMP- and cGMP-dependent protein kinase phosphorylation sites of     1815.  Vandekerckhove J: Structural principles of actin-binding proteins. Curr Opin Cell Biol
                     the focal adhesion vasodilator-stimulated phosphoprotein (VASP)  in vitro and in   1(1):15–22, 1989.
                     intact human platelets. J Biol Chem 269(20):14509–14517, 1994.    1816.  Chen  M,  Stracher  A:  In situ  phosphorylation  of  platelet  actin-binding  protein  by
                    1796.  Hauser W, et al: Megakaryocyte hyperplasia and enhanced agonist-induced platelet   cAMP-dependent protein kinase stabilizes it against proteolysis by calpain.  J  Biol
                     activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad   Chem 264:14282–14289, 1989.
                     Sci U S A 96(14):8120–8125, 1999.                    1817.  Lind SE, Stossel TP: The microfilament network of the platelet. Prog Hemost Thromb
                    1797.  Massberg S, et al: Enhanced in vivo platelet adhesion in vasodilator-stimulated phos-  6:63–84, 1982.
                     phoprotein (VASP)-deficient mice. Blood 103(1):136–142, 2004.    1818.  He P, Zhang H, Yun CC: IRBIT, inositol 1,4,5-triphosphate (IP3) receptor-binding
                    1798.  Maurice DH, Haslam RJ: Molecular basis of the synergistic inhibition of platelet func-  protein released with IP3, binds Na+/H+ exchanger NHE3 and activates NHE3 activ-
                     tion by nitrovasodilators and activators of adenylate cyclase: Inhibition of cyclic AMP   ity in response to calcium. J Biol Chem 283(48):33544–33553, 2008.
                     breakdown by cyclic GMP. Mol Pharmacol 37(5):671–681, 1990.    1819.  Beckerle MC, et al: Activation-dependent redistribution of the adhesion plaque pro-
                    1799.  Atkinson B, et al: Ecto-nucleotidases of the CD39/NTPDase family modulate platelet   tein, talin, in intact human platelets. J Cell Biol 109:3333–3346, 1989.
                     activation and thrombus formation: Potential as therapeutic targets. Blood Cells Mol     1820.  O’Halloran T, Beckerle MC, Burridge K: Identification of talin as a major cytoplasmic
                     Dis 36(2):217–222, 2006.                               protein implicated in platelet activation. Nature 317:449–451, 1985.
                    1800.  Kaczmarek E, et al: Identification and characterization of CD39/vascular ATP diphos-    1821.  Koteliansky VE, Gneushev GN, Glukhova MA, et al: Identification and isolation of
                     phohydrolase. J Biol Chem 271(51):33116–33122, 1996.   vinculin from platelets. FEBS Lett 165(1):26–30, 1984.
                    1801.  Marcus AJ, et al: The endothelial cell ecto-ADPase responsible for inhibition of plate-    1822.  Langer B, Gonnella PA, Nachmias VT: Alpha-actinin and vinculin in normal and
                     let function is CD39. J Clin Invest 99(6):1351–1360, 1997.  thrombasthenic platelets. Blood 63(3):606–614, 1984.
                    1802.  Le F, et al: Characterization and chromosomal localization of the human A2a ade-    1823.  Lucas RC, et al: The isolation and characterization of a cytoskeleton and a contrac-
                     nosine receptor  gene: ADORA2A.  Biochem Biophys Res Commun 223(2):461–467,   tile apparatus from platelets., in  Protides of Biological Fluids, edited by H Peeters,
                     1996.                                                  pp 465–470. Pergamon Press, New York, 1975.
                    1803.  Pulte D, Olson KE, Broekman MJ, et al: CD39 activity correlates with stage and inhib-    1824.  Wang LL, Bryan J: Isolation of calcium-dependent platelet proteins that interact with
                     its platelet reactivity in chronic lymphocytic leukemia. J Transl Med 5:23, 2007.  actin. Cell 25(3):637–649, 1981.
                    1804.  Gayle RB 3rd, Maliszewski CR, Gimpel SD, et al: Inhibition of platelet function by     1825.  Hathaway DR, Adelstein RS: Human platelet myosin light chain kinase requires the
                     recombinant soluble ecto-ADPase/CD39. J Clin Invest 101(9):1851–1859, 1998.  calcium binding protein calmodulin for activity. Proc Natl Acad Sci U S A 76:1653,
                    1805.  White JG: Platelet ultrastructure, in Hemostasis and Thrombosis, edited by AL Bloom,   1979.
                     CD Forbes, P Duncan, EGD Tuddenham, pp 49–88. Churchill Livingstone, Edinburgh,     1826.  Wolff DJ, Brostrom CO: Proterties and functions of the calcium-dependent regulator
                     1994.                                                  protein. Adv Cyclic Nucleotide Res 11:27, 1979.
                    1806.  Varga-Szabo D, Braun A, Nieswandt B: Calcium signaling in platelets.  J Thromb      1827.  Daniel JL: Platelet contractile proteins, in Hemostasis and Thrombosis: Basic Princi-
                     Haemost 7(7):1057–1066, 2009.                          ples and Clinical Practice, edited by RW Colman, J Hirsh, VJ Marder, EW Salzman,
                    1807.  Bray PF: Platelet genomics beats the catch-22. Blood 114(7):1286–1287, 2009.  pp 557–573. JB Lippincott, Philadelphia, 1993.
                    1808.  Bray PF, McKenzie SE, Edelstein LC, et al: The complex transcriptional landscape of
                     the anucleate human platelet. BMC Genomics 14:1, 2013.














































          Kaushansky_chapter 112_p1829-1914.indd   1913                                                                 17/09/15   3:30 pm
   1933   1934   1935   1936   1937   1938   1939   1940   1941   1942   1943