Page 196 - Williams Hematology ( PDFDrive )
P. 196
170 Part IV: Molecular and Cellular Hematology Chapter 12: Epigenetics 171
REFERENCES 35. He YF, Li BZ, Li Z, et al: Tet-mediated formation of 5-carboxylcytosine and its excision
by TDG in mammalian DNA. Science 333(6047):1303–1307, 2011.
1. Dawson MA, Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell 36. Meyer C, Kowarz E, Hofmann J, et al: New insights to the MLL recombinome of acute
150(1):12–27, 2012. leukemias. Leukemia 23(8):1490–1499, 2009.
2. Baylin SB, Jones PA: A decade of exploring the cancer epigenome-biological and trans- 37. Corral J, Lavenir I, Impey H, et al: An Mll-AF9 fusion gene made by homologous
lational implications. Nat Rev Cancer 11(10):726–734, 2011. recombination causes acute leukemia in chimeric mice: A method to create fusion
3. Clapier CR, Cairns BR: The biology of chromatin remodeling complexes. Annu Rev oncogenes. Cell 85(6):853–861, 1996.
Biochem 78:273–304, 2009. 38. Yokoyama A, Lin M, Naresh A, et al: A higher-order complex containing AF4 and ENL
4. Narlikar GJ, Fan HY, Kingston RE: Cooperation between complexes that regulate chro- family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent
matin structure and transcription. Cell 108(4):475–487, 2002. transcription. Cancer Cell 17(2):198–212, 2010.
5. Lessard JA, Crabtree GR: Chromatin regulatory mechanisms in pluripotency. Annu Rev 39. Lin C, Smith ER, Takahashi H, et al: AFF4, a component of the ELL/P-TEFb elongation
Cell Dev Biol 26(1):503–532, 2010. complex and a shared subunit of MLL chimeras, can link transcription elongation to
6. Krasteva V, Buscarlet M, Diaz-Tellez A, et al: The BAF53a subunit of SWI/SNF-like BAF leukemia. Mol Cell 37(3):429–437, 2010.
complexes is essential for hemopoietic stem cell function. Blood 120(24):4720–4732, 40. Bernt KM, Zhu N, Sinha AU, et al: MLL-rearranged leukemia is dependent on aberrant
2012. H3K79 methylation by DOT1L. Cancer Cell 20(1):66–78, 2011.
7. Bultman SJ, Gebuhr TC, Magnuson T: A Brg1 mutation that uncouples ATPase activity 41. Okada Y, Feng Q, Lin Y, et al: HDOT1L links histone methylation to leukemogenesis.
from chromatin remodeling reveals an essential role for SWI/SNF-related complexes Cell 121(2):167–178, 2005.
in beta-globin expression and erythroid development. Genes Dev 19(23):2849–2861, 42. Nguyen AT, Taranova O, He J, Zhang Y: DOT1L, the H3K79 methyltransferase, is
2005. required for MLL-AF9-mediated leukemogenesis. Blood 117(25):6912–6922, 2011.
8. Kadoch C, Hargreaves DC, Hodges C, et al: Proteomic and bioinformatic analysis of 43. Grignani F, De Matteis S, Nervi C, et al: Fusion proteins of the retinoic acid recep-
mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat tor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391(6669):
Genet 45(6):592–601, 2013. 815–818, 1998.
9. Nair SS, Li DQ, Kumar R: A core chromatin remodeling factor instructs global chro- 44. Lin RJ, Nagy L, Inoue S, et al: Role of the histone deacetylase complex in acute promy-
matin signaling through multivalent reading of nucleosome codes. Mol Cell 49(4): elocytic leukaemia. Nature 391(6669):811–814, 1998.
704–718, 2013. 45. Daigle SR, Olhava EJ, Therkelsen CA, et al: Selective killing of mixed lineage leukemia
10. Fujita N, Jaye DL, Geigerman C, et al: MTA3 and the Mi-2/NuRD complex regulate cell cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65, 2011.
fate during B lymphocyte differentiation. Cell 119(1):75–86, 2004. 46. Zuber J, Shi J, Wang E, et al: RNAi screen identifies Brd4 as a therapeutic target in acute
11. Landry JW, Banerjee S, Taylor B, et al: Chromatin remodeling complex NURF regulates myeloid leukaemia. Nature 478(7370):524–528, 2011.
thymocyte maturation. Genes Dev 25(3):275–286, 2011. 47. Fiskus W, Sharma S, Qi J, et al: Highly active combination of BRD4 antagonist and
12. Zhang J, Jackson AF, Naito T, et al: Harnessing of the nucleosome-remodeling-deacet- histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol
ylase complex controls lymphocyte development and prevents leukemogenesis. Nat Cancer Ther 13(5):1142–1154, 2014.
Immunol 13(1):86–94, 2012. 48. Dawson MA, Prinjha RK, Dittmann A, et al: Inhibition of BET recruitment to chro-
13. Kouzarides T: Chromatin modifications and their function. Cell 128(4):693–705, 2007. matin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533,
14. Vermeulen M, Mulder KW, Denissov S, et al: Selective anchoring of TFIID to nucle- 2011.
osomes by trimethylation of histone H3 lysine 4. Cell 131(1):58–69, 2007. 49. Delmore JE, Issa GC, Lemieux ME, et al: BET bromodomain inhibition as a therapeutic
15. Yun M, Wu J, Workman JL, Li B: Readers of histone modifications. Cell Res 21(4): strategy to target c-Myc. Cell 146(6):904–917, 2011.
564–578, 2011. 50. Morin RD, Mendez-Lago M, Mungall AJ, et al: Frequent mutation of histone-modify-
16. Strahl BD, Allis CD: The language of covalent histone modifications. Nature ing genes in non-Hodgkin lymphoma. Nature 476(7360):298–303, 2011.
403(6765):41–45, 2000. 51. Muto T, Sashida G, Oshima M, et al: Concurrent loss of Ezh2 and Tet2 cooperates in the
17. Dhalluin C, Carlson JE, Zeng L, et al: Structure and ligand of a histone acetyltransferase pathogenesis of myelodysplastic disorders. J Exp Med 210(12):2627–2639, 2013.
bromodomain. Nature 399(6735):491–496, 1999. 52. Nikoloski G, Langemeijer SM, Kuiper RP, et al: Somatic mutations of the histone meth-
18. Zeng L, Zhou MM: Bromodomain: An acetyl-lysine binding domain. FEBS Lett yltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42(8):665–667,
513(1):124–128, 2002. 2010.
19. Li Carey BM, Workman JL: The role of chromatin during transcription. Cell 128(4): 53. Ernst T, Chase AJ, Score J, et al: Inactivating mutations of the histone methyltransferase
707–719, 2007. gene EZH2 in myeloid disorders. Nat Genet 42(8):722–726, 2010.
20. Shen X, Liu Y, Hsu YJ, et al: EZH1 mediates methylation on histone H3 lysine 27 and 54. van Haaften G, Dalgliesh GL, Davies H, et al: Somatic mutations of the histone H3K27
complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol demethylase gene UTX in human cancer. Nat Genet 41(5):521–523, 2009.
Cell 32(4):491–502, 2008. 55. Bejar R, Stevenson K, Abdel-Wahab O, et al: Clinical effect of point mutations in myel-
21. Xu J, Shao Z, Li D, et al: Developmental control of polycomb subunit composition by odysplastic syndromes. N Engl J Med 364(26):2496–2506, 2011.
GATA factors mediates a switch to non-canonical functions. Mol Cell 57(2):304–316, 56. McCabe MT, Ott HM, Ganji G, et al: EZH2 inhibition as a therapeutic strategy for
2015. lymphoma with EZH2-activating mutations. Nature 492(7427):108–112, 2012.
22. Ostuni R, Piccolo V, Barozzi I, et al: Latent enhancers activated by stimulation in differ- 57. Itzykson R, Kosmider O, Renneville A, et al: Prognostic score including gene mutations
entiated cells. Cell 152(1–2):157–171, 2013. in chronic myelomonocytic leukemia. J Clin Oncol 31(19):2428–2436, 2013.
23. Goll MG, Bestor TH: Eukaryotic cytosine methyltransferases. Annu Rev Biochem 58. Tefferi A, Lim KH, Abdel-Wahab O, et al: Detection of mutant TET2 in myeloid malig-
74:481–514, 2005. nancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML.
24. Bostick M, Kim JK, Estève PO, et al: UHRF1 plays a role in maintaining DNA methyla- Leukemia 23(7):1343–1345, 2009.
tion in mammalian cells. Science 317(5845):1760–1764, 2007. 59. Grossmann V, Kohlmann A, Eder C, et al: Molecular profiling of chronic myelomono-
25. Klempnauer KH: Methylation-sensitive DNA binding by v-myb and c-myb proteins. cytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2
Oncogene 8(1):111–115, 1993. being of high prognostic relevance. Leukemia 25(5):877–879, 2011.
26. Campanero MR, Armstrong MI, Flemington EK: CpG methylation as a mechanism for 60. Wu H, D’Alessio AC, Ito S, et al: Genome-wide analysis of 5-hydroxymethylcytosine
the regulation of E2F activity. Proc Natl Acad Sci U S A 97(12):6481–6486, 2000. distribution reveals its dual function in transcriptional regulation in mouse embryonic
27. Kirillov A, Kistler B, Mostoslavsky R, et al: A role for nuclear NF-kappaB in B-cell- stem cells. Genes Dev 25(7):679–684, 2011.
specific demethylation of the Igkappa locus. Nat Genet 13(4):435–441, 1996. 61. Figueroa ME, Abdel-Wahab O, Lu C, et al: Leukemic IDH1 and IDH2 mutations result
28. Weih F, Nitsch D, Reik A, et al: Analysis of CpG methylation and genomic footprinting in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic
at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to pre- differentiation. Cancer Cell 18(6):553–567, 2010.
vent protein binding in vivo. EMBO J 10(9):2559–2567, 1991. 62. Kats LM, Reschke M, Taulli R, et al: Proto-oncogenic role of mutant IDH2 in leukemia
29. Comb M, Goodman HM: CpG methylation inhibits proenkephalin gene expression initiation and maintenance. Cell Stem Cell 14(3):329–341, 2014.
and binding of the transcription factor AP-2. Nucleic Acids Res 18(13):3975–3982, 1990. 63. Losman JA, Looper RE, Koivunen P, et al: (R)-2-hydroxyglutarate is sufficient to pro-
30. Hendrich B, Bird A: Identification and characterization of a family of mammalian mote leukemogenesis and its effects are reversible. Science 339(6127):1621–1625, 2013.
methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547, 1998. 64. Lu C, Ward PS, Kapoor GS, et al: IDH mutation impairs histone demethylation and
31. Bogdanovic O, Veenstra GJ: DNA methylation and methyl-CpG binding proteins: results in a block to cell differentiation. Nature 483(7390):474–478, 2012.
Developmental requirements and function. Chromosoma 118(5):549–565, 2009. 65. Sasaki M, Knobbe CB, Munger JC, et al: IDH1(R132H) mutation increases murine hae-
32. Baylin S, Bestor TH: Altered methylation patterns in cancer cell genomes: Cause or matopoietic progenitors and alters epigenetics. Nature 488(7413):656–659, 2012.
consequence? Cancer Cell 1(4):299–305, 2002. 66. Dang Jin LS, Su SM: IDH mutations in glioma and acute myeloid leukemia. Trends Mol
33. Tahiliani M, Koh KP, Shen Y, et al: Conversion of 5-methylcytosine to 5-hydroxymeth- Med 16(9):387–397, 2010.
ylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935, 67. Ye D, Ma S, Xiong Y, Guan KL: R-2-hydroxyglutarate as the key effector of IDH muta-
2009. tions promoting oncogenesis. Cancer Cell 23(3):274–276, 2013.
34. Ito S, Shen L, Dai Q, et al: Tet proteins can convert 5-methylcytosine to 5-formylcytosine 68. Xiao M, Yang H, Xu W, et al: Inhibition of α-KG-dependent histone and DNA demeth-
and 5-carboxylcytosine. Science 333(6047):1300–1303, 2011. ylases by fumarate and succinate that are accumulated in mutations of FH and SDH
tumor suppressors. Genes Dev 26(12):1326–1338, 2012.
Kaushansky_chapter 12_p0165-0172.indd 171 17/09/15 6:30 pm

