Page 196 - Williams Hematology ( PDFDrive )
P. 196

170  Part IV:  Molecular and Cellular Hematology                                   Chapter 12:  Epigenetics           171




                  REFERENCES                                              35.  He YF, Li BZ, Li Z, et al: Tet-mediated formation of 5-carboxylcytosine and its excision
                                                                           by TDG in mammalian DNA. Science 333(6047):1303–1307, 2011.
                    1.  Dawson MA, Kouzarides T: Cancer epigenetics: From mechanism to therapy.  Cell     36.  Meyer C, Kowarz E, Hofmann J, et al: New insights to the MLL recombinome of acute
                     150(1):12–27, 2012.                                   leukemias. Leukemia 23(8):1490–1499, 2009.
                    2.  Baylin SB, Jones PA: A decade of exploring the cancer epigenome-biological and trans-    37.  Corral J, Lavenir I, Impey H, et al: An Mll-AF9 fusion gene made by homologous
                     lational implications. Nat Rev Cancer 11(10):726–734, 2011.  recombination causes acute leukemia in chimeric mice: A method to create fusion
                    3.  Clapier CR, Cairns BR: The biology of chromatin remodeling complexes. Annu Rev   oncogenes. Cell 85(6):853–861, 1996.
                     Biochem 78:273–304, 2009.                            38.  Yokoyama A, Lin M, Naresh A, et al: A higher-order complex containing AF4 and ENL
                    4.  Narlikar GJ, Fan HY, Kingston RE: Cooperation between complexes that regulate chro-  family  proteins  with  P-TEFb  facilitates  oncogenic  and physiologic  MLL-dependent
                     matin structure and transcription. Cell 108(4):475–487, 2002.  transcription. Cancer Cell 17(2):198–212, 2010.
                    5.  Lessard JA, Crabtree GR: Chromatin regulatory mechanisms in pluripotency. Annu Rev     39.  Lin C, Smith ER, Takahashi H, et al: AFF4, a component of the ELL/P-TEFb elongation
                     Cell Dev Biol 26(1):503–532, 2010.                    complex and a shared subunit of MLL chimeras, can link transcription elongation to
                    6.  Krasteva V, Buscarlet M, Diaz-Tellez A, et al: The BAF53a subunit of SWI/SNF-like BAF   leukemia. Mol Cell 37(3):429–437, 2010.
                     complexes is essential for hemopoietic stem cell function. Blood 120(24):4720–4732,     40.  Bernt KM, Zhu N, Sinha AU, et al: MLL-rearranged leukemia is dependent on aberrant
                     2012.                                                 H3K79 methylation by DOT1L. Cancer Cell 20(1):66–78, 2011.
                    7.  Bultman SJ, Gebuhr TC, Magnuson T: A Brg1 mutation that uncouples ATPase activity     41.  Okada Y, Feng Q, Lin Y, et al: HDOT1L links histone methylation to leukemogenesis.
                     from chromatin remodeling reveals an essential role for SWI/SNF-related complexes   Cell 121(2):167–178, 2005.
                     in beta-globin expression and erythroid development. Genes Dev 19(23):2849–2861,     42.  Nguyen  AT,  Taranova  O,  He  J,  Zhang  Y:  DOT1L,  the  H3K79  methyltransferase,  is
                     2005.                                                 required for MLL-AF9-mediated leukemogenesis. Blood 117(25):6912–6922, 2011.
                    8.  Kadoch C, Hargreaves DC, Hodges C, et al: Proteomic and bioinformatic analysis of     43.  Grignani F, De Matteis S, Nervi C, et al: Fusion proteins of the retinoic acid recep-
                     mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat   tor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391(6669):
                     Genet 45(6):592–601, 2013.                            815–818, 1998.
                    9.  Nair SS, Li DQ, Kumar R: A core chromatin remodeling factor instructs global chro-    44.  Lin RJ, Nagy L, Inoue S, et al: Role of the histone deacetylase complex in acute promy-
                     matin  signaling through multivalent  reading  of  nucleosome  codes.  Mol Cell  49(4):   elocytic leukaemia. Nature 391(6669):811–814, 1998.
                     704–718, 2013.                                       45.  Daigle SR, Olhava EJ, Therkelsen CA, et al: Selective killing of mixed lineage leukemia
                    10.  Fujita N, Jaye DL, Geigerman C, et al: MTA3 and the Mi-2/NuRD complex regulate cell   cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65, 2011.
                     fate during B lymphocyte differentiation. Cell 119(1):75–86, 2004.    46.  Zuber J, Shi J, Wang E, et al: RNAi screen identifies Brd4 as a therapeutic target in acute
                    11.  Landry JW, Banerjee S, Taylor B, et al: Chromatin remodeling complex NURF regulates   myeloid leukaemia. Nature 478(7370):524–528, 2011.
                     thymocyte maturation. Genes Dev 25(3):275–286, 2011.    47.  Fiskus W, Sharma S, Qi J, et al: Highly active combination of BRD4 antagonist and
                    12.  Zhang J, Jackson AF, Naito T, et al: Harnessing of the nucleosome-remodeling-deacet-  histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol
                     ylase complex controls lymphocyte development and prevents leukemogenesis.  Nat   Cancer Ther 13(5):1142–1154, 2014.
                     Immunol 13(1):86–94, 2012.                           48.  Dawson MA, Prinjha RK, Dittmann A, et al: Inhibition of BET recruitment to chro-
                    13.  Kouzarides T: Chromatin modifications and their function. Cell 128(4):693–705, 2007.  matin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533,
                    14.  Vermeulen M, Mulder KW, Denissov S, et al: Selective anchoring of TFIID to nucle-  2011.
                     osomes by trimethylation of histone H3 lysine 4. Cell 131(1):58–69, 2007.    49.  Delmore JE, Issa GC, Lemieux ME, et al: BET bromodomain inhibition as a therapeutic
                    15.  Yun M, Wu J, Workman JL, Li B: Readers of histone modifications. Cell Res 21(4):   strategy to target c-Myc. Cell 146(6):904–917, 2011.
                     564–578, 2011.                                       50.  Morin RD, Mendez-Lago M, Mungall AJ, et al: Frequent mutation of histone-modify-
                    16.  Strahl BD, Allis CD: The language of covalent histone modifications.  Nature   ing genes in non-Hodgkin lymphoma. Nature 476(7360):298–303, 2011.
                     403(6765):41–45, 2000.                               51.  Muto T, Sashida G, Oshima M, et al: Concurrent loss of Ezh2 and Tet2 cooperates in the
                    17.  Dhalluin C, Carlson JE, Zeng L, et al: Structure and ligand of a histone acetyltransferase   pathogenesis of myelodysplastic disorders. J Exp Med 210(12):2627–2639, 2013.
                     bromodomain. Nature 399(6735):491–496, 1999.         52.  Nikoloski G, Langemeijer SM, Kuiper RP, et al: Somatic mutations of the histone meth-
                    18.  Zeng L, Zhou MM: Bromodomain: An acetyl-lysine binding domain.  FEBS Lett   yltransferase gene EZH2 in myelodysplastic syndromes.  Nat Genet 42(8):665–667,
                     513(1):124–128, 2002.                                 2010.
                    19.  Li Carey BM, Workman JL: The role of chromatin during transcription. Cell 128(4):     53.  Ernst T, Chase AJ, Score J, et al: Inactivating mutations of the histone methyltransferase
                     707–719, 2007.                                        gene EZH2 in myeloid disorders. Nat Genet 42(8):722–726, 2010.
                    20.  Shen X, Liu Y, Hsu YJ, et al: EZH1 mediates methylation on histone H3 lysine 27 and     54.  van Haaften G, Dalgliesh GL, Davies H, et al: Somatic mutations of the histone H3K27
                     complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol   demethylase gene UTX in human cancer. Nat Genet 41(5):521–523, 2009.
                     Cell 32(4):491–502, 2008.                            55.  Bejar R, Stevenson K, Abdel-Wahab O, et al: Clinical effect of point mutations in myel-
                    21.  Xu J, Shao Z, Li D, et al: Developmental control of polycomb subunit composition by   odysplastic syndromes. N Engl J Med 364(26):2496–2506, 2011.
                     GATA factors mediates a switch to non-canonical functions. Mol Cell 57(2):304–316,     56.  McCabe MT, Ott HM, Ganji G, et al: EZH2 inhibition as a therapeutic strategy for
                     2015.                                                 lymphoma with EZH2-activating mutations. Nature 492(7427):108–112, 2012.
                    22.  Ostuni R, Piccolo V, Barozzi I, et al: Latent enhancers activated by stimulation in differ-    57.  Itzykson R, Kosmider O, Renneville A, et al: Prognostic score including gene mutations
                     entiated cells. Cell 152(1–2):157–171, 2013.          in chronic myelomonocytic leukemia. J Clin Oncol 31(19):2428–2436, 2013.
                    23.  Goll MG, Bestor TH: Eukaryotic cytosine methyltransferases.  Annu Rev Biochem     58.  Tefferi A, Lim KH, Abdel-Wahab O, et al: Detection of mutant TET2 in myeloid malig-
                     74:481–514, 2005.                                     nancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML.
                    24.  Bostick M, Kim JK, Estève PO, et al: UHRF1 plays a role in maintaining DNA methyla-  Leukemia 23(7):1343–1345, 2009.
                     tion in mammalian cells. Science 317(5845):1760–1764, 2007.    59.  Grossmann V, Kohlmann A, Eder C, et al: Molecular profiling of chronic myelomono-
                    25.  Klempnauer KH: Methylation-sensitive DNA binding by v-myb and c-myb proteins.   cytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2
                     Oncogene 8(1):111–115, 1993.                          being of high prognostic relevance. Leukemia 25(5):877–879, 2011.
                    26.  Campanero MR, Armstrong MI, Flemington EK: CpG methylation as a mechanism for     60.  Wu H, D’Alessio AC, Ito S, et al: Genome-wide analysis of 5-hydroxymethylcytosine
                     the regulation of E2F activity. Proc Natl Acad Sci U S A 97(12):6481–6486, 2000.  distribution reveals its dual function in transcriptional regulation in mouse embryonic
                    27.  Kirillov A, Kistler B, Mostoslavsky R, et al: A role for nuclear NF-kappaB in B-cell-   stem cells. Genes Dev 25(7):679–684, 2011.
                     specific demethylation of the Igkappa locus. Nat Genet 13(4):435–441, 1996.    61.  Figueroa ME, Abdel-Wahab O, Lu C, et al: Leukemic IDH1 and IDH2 mutations result
                    28.  Weih F, Nitsch D, Reik A, et al: Analysis of CpG methylation and genomic footprinting   in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic
                     at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to pre-  differentiation. Cancer Cell 18(6):553–567, 2010.
                     vent protein binding in vivo. EMBO J 10(9):2559–2567, 1991.    62.  Kats LM, Reschke M, Taulli R, et al: Proto-oncogenic role of mutant IDH2 in leukemia
                    29.  Comb M, Goodman HM: CpG methylation inhibits proenkephalin gene expression   initiation and maintenance. Cell Stem Cell 14(3):329–341, 2014.
                     and binding of the transcription factor AP-2. Nucleic Acids Res 18(13):3975–3982, 1990.    63.  Losman JA, Looper RE, Koivunen P, et al: (R)-2-hydroxyglutarate is sufficient to pro-
                    30.  Hendrich  B,  Bird  A:  Identification  and  characterization  of  a  family  of  mammalian   mote leukemogenesis and its effects are reversible. Science 339(6127):1621–1625, 2013.
                     methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547, 1998.    64.  Lu C, Ward PS, Kapoor GS, et al: IDH mutation impairs histone demethylation and
                    31.  Bogdanovic O, Veenstra GJ: DNA methylation and methyl-CpG binding proteins:   results in a block to cell differentiation. Nature 483(7390):474–478, 2012.
                     Developmental requirements and function. Chromosoma 118(5):549–565, 2009.    65.  Sasaki M, Knobbe CB, Munger JC, et al: IDH1(R132H) mutation increases murine hae-
                    32.  Baylin S, Bestor TH: Altered methylation patterns in cancer cell genomes: Cause or   matopoietic progenitors and alters epigenetics. Nature 488(7413):656–659, 2012.
                     consequence? Cancer Cell 1(4):299–305, 2002.         66.  Dang Jin LS, Su SM: IDH mutations in glioma and acute myeloid leukemia. Trends Mol
                    33.  Tahiliani M, Koh KP, Shen Y, et al: Conversion of 5-methylcytosine to 5-hydroxymeth-  Med 16(9):387–397, 2010.
                     ylcytosine in mammalian DNA by MLL partner TET1.  Science 324(5929):930–935,     67.  Ye D, Ma S, Xiong Y, Guan KL: R-2-hydroxyglutarate as the key effector of IDH muta-
                     2009.                                                 tions promoting oncogenesis. Cancer Cell 23(3):274–276, 2013.
                    34.  Ito S, Shen L, Dai Q, et al: Tet proteins can convert 5-methylcytosine to 5-formylcytosine     68.  Xiao M, Yang H, Xu W, et al: Inhibition of α-KG-dependent histone and DNA demeth-
                     and 5-carboxylcytosine. Science 333(6047):1300–1303, 2011.  ylases by fumarate and succinate that are accumulated in mutations of FH and SDH
                                                                           tumor suppressors. Genes Dev 26(12):1326–1338, 2012.






          Kaushansky_chapter 12_p0165-0172.indd   171                                                                   17/09/15   6:30 pm
   191   192   193   194   195   196   197   198   199   200   201