Page 744 - Williams Hematology ( PDFDrive )
P. 744
718 Part VI: The Erythrocyte Chapter 47: Erythrocyte Enzyme Disorders 719
394. Shi Z-Z, Habib GM, Rhead WJ, et al: Mutations in the glutathione synthetase gene 426. Rees DC, Duley J, Simmonds HA, et al: Interaction of hemoglobin E and pyrimidine 5′
cause 5-oxoprolinuria. Nat Genet 14:361–365, 1996. nucleotidase deficiency. Blood 88:2761–2767, 1996.
395. Ristoff E, Mayatepek E, Larsson A: Long-term clinical outcome in patients with gluta- 427. Lachant NA, Tanaka KR: Red cell metabolism in hereditary pyrimidine 5′-nucleotidase
thione synthetase deficiency. J Pediatr 139:79–84, 2001. deficiency: Effect of magnesium. Br J Haematol 63:615–623, 1986.
396. Njalsson R, Ristoff E, Carlsson K, et al: Genotype, enzyme activity, glutathione level, 428. Lachant NA, Zerez CR, Tanaka KR: Pyrimidine nucleotides impair phosphoribosylpy-
and clinical phenotype in patients with glutathione synthetase deficiency. Hum Genet rophosphate (PRPP) synthetase subunit aggregation by sequestering magnesium.
116:384–389, 2005. A mechanism for the decreased PRPP synthetase activity in hereditary erythrocyte
397. Ristoff E: Inborn errors of GSH metabolism, in Glutathione and Sulfur Amino Acids in pyrimidine 5′-nucleotidase deficiency. Biochim Biophys Acta 994:81–88, 1989.
Human Health and Disease, edited by Masella R, Mazza G, pp 343–362. John Wiley & 429. Zerez CR, Lachant NA, Tanaka KR: Decrease in subunit aggregation of phosphori-
Sons, New York, 2009. bosylpyrophosphate synthetase: A mechanism for decreased nucleotide concentrations
398. Riudor E, Arranz JA, Alvarez R, et al: Massive 5-oxoprolinuria with normal 5-oxoprolinase in pyruvate kinase-deficient human erythrocytes. Blood 68:1024–1029, 1986.
and glutathione synthetase activities. J Inherit Metab Dis 24:404–406, 2001. 430. Lachant NA, Zerez CR, Tanaka KR: Pyrimidine nucleoside monophosphate kinase
399. Mayatepek E: 5-Oxoprolinuria in patients with and without defects in the gamma-glu- hyperactivity in hereditary erythrocyte pyrimidine 5′-nucleotidase deficiency. Br
tamyl cycle. Eur J Pediatr 158:221–225, 1999. J Haematol 66:91–96, 1987.
400. Pederzolli CD, Mescka CP, Zandona BR, et al: Acute administration of 5-oxoproline 431. Valentine WN, Anderson HM, Paglia DE, et al: Studies on human erythrocyte nucleo-
induces oxidative damage to lipids and proteins and impairs antioxidant defenses in tide metabolism. II. Nonspherocytic hemolytic anemia, high red cell ATP, and ribose-
cerebral cortex and cerebellum of young rats. Metab Brain Dis 25:145–154, 2010. phosphate pyrophosphokinase (RPK, E.C.2.7.6.1) deficiency. Blood 39:674–684, 1972.
401. Simon E, Vogel M, Fingerhut R, et al: Diagnosis of glutathione synthetase deficiency in 432. Oda E, Oda S, Tomoda A, et al: Hemolytic anemia in hereditary pyrimidine 5′-
newborn screening. J Inherit Metab Dis 32 Suppl 1:S269–S272, 2009. nucleotidase deficiency. II. Effect of pyrimidine nucleotides and their derivatives on gly-
402. Burstedt MS, Ristoff E, Larsson A, et al: Rod-cone dystrophy with maculopathy in colytic and pentose phosphate shunt enzyme activity. Clin Chim Acta 141:93–100, 1984.
genetic glutathione synthetase deficiency: A morphologic and electrophysiologic study. 433. Chiarelli LR, Morera SM, Galizzi A, et al: Molecular basis of pyrimidine 5′-nucleotidase
Ophthalmology 116:324–331, 2009. deficiency caused by 3 newly identified missense mutations (c.187T>C, c.469G>C and
403. Winkler A, Njalsson R, Carlsson K, et al: Glutathione is essential for early embryo- c.740T>C) and a tabulation of known mutations. Blood Cells Mol Dis 40:295–301, 2008.
genesis—analysis of a glutathione synthetase knockout mouse. Biochem Biophys Res 434. Warang P, Kedar P, Kar R, et al: New missense homozygous mutation (Q270Ter) in the
Commun 412:121–126, 2011. pyrimidine 5′ nucleotidase type I-related gene in two Indian families with hereditary
404. Kamerbeek NM, van Zwieten R, de Boer M, et al: Molecular basis of glutathione reduc- non-spherocytic hemolytic anemia. Ann Hematol 92:715–717, 2013.
tase deficiency in human blood cells. Blood 109:3560–3566, 2007. 435. Chiarelli LR, Bianchi P, Fermo E, et al: Functional analysis of pyrimidine 5′-nucleotidase
405. Loos H, Roos D, Weening R, et al: Familial deficiency of glutathione reductase in mutants causing nonspherocytic hemolytic anemia. Blood 105:3340–3345, 2005.
human blood cells. Blood 48:53–62, 1976. 436. David O, Vota MG, Piga A, et al: Pyrimidine 5′-nucleotidase acquired deficiency in
406. Gallo V, Schwarzer E, Rahlfs S, et al: Inherited glutathione reductase deficiency and beta-thalassemia: Involvement of enzyme-SH groups in the inactivation process. Acta
Plasmodium falciparum malaria–a case study. PLoS One 4:e7303, 2009. Haematol 82:69–74, 1989.
407. Miwa S, Fujii H, Tani K, et al: Red cell adenylate kinase deficiency associated with 437. Vives Corrons JL, Pujades MA, Aguilari Bascompte JL, et al: Pyrimidine 5′nucleotidase
hereditary nonspherocytic hemolytic anemia: Clinical and biochemical studies. Am J and several other red cell enzyme activities in beta-thalassaemia trait. Br J Haematol
Hematol 14:325–333, 1983. 56:483–494, 1984.
408. Matsuura S, Igarashi M, Tanizawa Y, et al: Human adenylate kinase deficiency associ- 438. Dern RJ, Beutler E, Alving AS: The hemolytic effect of primaquine. V. Primaquine sen-
ated with hemolytic anemia. A single base substitution affecting solubility and catalytic sitivity as a manifestation of a multiple drug sensitivity. J Lab Clin Med 45:30–39, 1955.
activity of the cytosolic adenylate kinase. J Biol Chem 264:10148–10155, 1989. 439. Cohen G, Hochstein P: Generation of hydrogen peroxide in erythrocytes by hemolytic
409. Qualtieri A, Pedace V, Bisconte MG, et al: Severe erythrocyte adenylate kinase defi- agents. Biochemistry 3:895–900, 1964.
ciency due to homozygous A—>G substitution at codon 164 of human AK1 gene asso- 440. Kosower NS, Song KR, Kosower EM, et al: Glutathione. II. Chemical aspects of azoester
ciated with chronic haemolytic anaemia. Br J Haematol 99:770–776, 1997. procedure for oxidation to disulfide. Biochim Biophys Acta 192:8–14, 1969.
410. Bianchi P, Zappa M, Bredi E, et al: A case of complete adenylate kinase deficiency due to 441. Birchmeier W, Tuchschmid PE, Winterhalter H: Comparison of human hemoglobin A
a nonsense mutation in AK-1 gene (Arg 107 —> Stop, CGA —> TGA) associated with carrying glutathione as a mixed disulfide with the naturally occurring human hemoglo-
chronic haemolytic anaemia. Br J Haematol 105:75–79, 1999. bin A3. Biochemistry 12:3667–3672, 1973.
411. Corrons JL, Garcia E, Tusell JJ, et al: Red cell adenylate kinase deficiency: Molecu- 442. Rachmilewitz EA, Harari E, Winterhalter KH: Separation of alpha- and beta-chains of
lar study of 3 new mutations (118G>A, 190G>A, and GAC deletion) associated with hemoglobin A by acetylphenylhydrazine. Biochim Biophys Acta 371:402–407, 1974.
hereditary nonspherocytic hemolytic anemia. Blood 102:353–356, 2003. 443. Kirkman HN, Gaetani GF: Catalase: A tetrameric enzyme with four tightly bound mol-
412. Fermo E, Bianchi P, Vercellati C, et al: A new variant of adenylate kinase (delG138) ecules of NADPH. Proc Natl Acad Sci U S A 81:4343–4347, 1984.
associated with severe hemolytic anemia. Blood Cells Mol Dis 33:146–149, 2004. 444. Gaetani GF, Rolfo M, Arena S, et al: Active involvement of catalase during hemolytic
413. Lachant NA, Zerez CR, Barredo J, et al: Hereditary erythrocyte adenylate kinase defi- crises of favism. Blood 88:1084–1088, 1996.
ciency: A defect of multiple phosphotransferases? Blood 77:2774–2784, 1991. 445. Rifkind RA: Heinz body anemia: An ultrastructural study. II. Red cell sequestration and
414. Toren A, Brok-Simoni F, Ben-Bassat I, et al: Congenital haemolytic anaemia associated destruction. Blood 26:433–448, 1965.
with adenylate kinase deficiency. Br J Haematol 87:376–380, 1994. 446. Ho YS, Xiong Y, Ma W, et al: Mice lacking catalase develop normally but show differen-
415. Valentine WN, Paglia DE, Tartaglia AP, et al: Hereditary hemolytic anemia with tial sensitivity to oxidant tissue injury. J Biol Chem 279:32804–32812, 2004.
increased red cell adenosine deaminase (45- to 70-fold) and decreased adenosine tri- 447. Cheah FC, Peskin AV, Wong FL, et al: Increased basal oxidation of peroxiredoxin 2
phosphate. Science 195:783–785, 1977. and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient
416. Perignon JL, Hamet M, Buc HA, et al: Biochemical study of a case of hemolytic anemia erythrocytes from newborn infants. FASEB J 28:3205–3210, 2014.
with increased (85 fold) red cell adenosine deaminase. Clin Chim Acta 124:205–212, 1982. 448. Bunn HE: F., Jandl JH: Exchange of heme among hemoglobin molecules. Proc Natl
417. Chottiner EG, Ginsburg D, Tartaglia AP, et al: Erythrocyte adenosine deaminase over- Acad Sci U S A 56:974–978, 1966.
production in hereditary hemolytic anemia. Blood 74:448–453, 1989. 449. Jandl JH: The Heinz body hemolytic anemias. Ann Intern Med 58:702–709, 1963.
418. Fujii H, Miwa S, Suzuki K: Purification and properties of adenosine deaminase in 450. Beutler E: Abnormalities of glycolysis (HMP shunt). Bibl Haematol 29:146–157, 1968.
normal and hereditary hemolytic anemia with increased red cell activity. Hemoglobin 451. Baehner RL, Nathan DG, Castle WB: Oxidant injury of Caucasian glucose-6-phosphate
4:693–705, 1980. dehydrogenase-deficient red blood cells by phagocytosing leukocytes during infection.
419. Chen EH, Tartaglia AP, Mitchell BS: Hereditary overexpression of adenosine deaminase J Clin Invest 50:2466–2473, 1971.
in erythrocytes: Evidence for a cis-acting mutation. Am J Hum Genet 53:889–893, 1993. 452. Arese P, De Flora A. Denaturation of normal and abnormal erythrocytes II. Pathophys-
420. Zanella A, Bianchi P, Fermo E, et al: Hereditary pyrimidine 5′-nucleotidase deficiency: iology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol
From genetics to clinical manifestations. Br J Haematol 133:113–123, 2006. 27:1–40, 1990.
421. Rees DC, Duley JA, Marinaki AM: Pyrimidine 5′ nucleotidase deficiency. Br J Haematol 453. Stamatoyannopoulos G, Fraser GR, Motulsky AG, et al: On the familial predisposition
120:375–383, 2003. to favism. Am J Hum Genet 18:253–263, 1966.
422. Vives i Corrons JL: Chronic non-spherocytic haemolytic anaemia due to congenital 454. Cassimos CH: R., Malaka-Zafiriu K, Tsiures J: Urinary d-glucaric acid excretion in nor-
pyrimidine 5′ nucleotidase deficiency: 25 years later. Baillieres Best Pract Res Clin Hae- mal and G6PD deficient children with favism. J. Pediatrics 84:871–872, 1974.
matol 13:103–118, 2000. 455. Bottini E, Bottini FG, Borgiani P, et al: Association between ACP1 and favism: A possi-
423. Swanson MS, Markin RS, Stohs SJ, et al: Identification of cytidine diphosphodiesters in ble biochemical mechanism. Blood 89:2613–2615, 1997.
erythrocytes from a patient with pyrimidine nucleotidase deficiency. Blood 63:665–670, 456. Fiorelli G, Podda M, Corrias A, et al: The relevance of immune reactions in acute
1984. favism. Acta Haematol. 51:211–218, 1974.
424. Tomoda A, Noble NA, Lachant NA, et al: Hemolytic anemia in hereditary pyrimidine 457. Turrini F, Naitana A, Mannuzzu L, et al: Increased red cell calcium, decreased calcium
5’-nucleotidase deficiency: Nucleotide inhibition of G6PD and the pentose phosphate adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis
shunt. Blood 60:1212–1218, 1982. in glucose-6-phosphate dehydrogenase-deficient (Mediterranean variant) individuals.
425. David O, Ramenghi U, Camaschella C, et al: Inhibition of hexose monophosphate Blood 66:302–305, 1985.
shunt in young erythrocytes by pyrimidine nucleotides in hereditary pyrimidine 5′ 458. De Flora A, Benatti U, Guida L, et al: Favism: Disordered erythrocyte calcium homeo-
nucleotidase deficiency. Eur J Haematol 47:48–54, 1991. stasis. Blood 66:294–297, 1985.
Kaushansky_chapter 47_p0689-0724.indd 719 9/17/15 6:45 PM

