Page 744 - Williams Hematology ( PDFDrive )
P. 744

718  Part VI:  The Erythrocyte                                   Chapter 47:  Erythrocyte Enzyme Disorders            719




                    394. Shi Z-Z, Habib GM, Rhead WJ, et al: Mutations in the glutathione synthetase gene     426. Rees DC, Duley J, Simmonds HA, et al: Interaction of hemoglobin E and pyrimidine 5′
                     cause 5-oxoprolinuria. Nat Genet 14:361–365, 1996.    nucleotidase deficiency. Blood 88:2761–2767, 1996.
                    395. Ristoff E, Mayatepek E, Larsson A: Long-term clinical outcome in patients with gluta-    427. Lachant NA, Tanaka KR: Red cell metabolism in hereditary pyrimidine 5′-nucleotidase
                     thione synthetase deficiency. J Pediatr 139:79–84, 2001.  deficiency: Effect of magnesium. Br J Haematol 63:615–623, 1986.
                    396. Njalsson R, Ristoff E, Carlsson K, et al: Genotype, enzyme activity, glutathione level,     428. Lachant NA, Zerez CR, Tanaka KR: Pyrimidine nucleotides impair phosphoribosylpy-
                     and clinical phenotype in patients with glutathione synthetase deficiency. Hum Genet   rophosphate (PRPP) synthetase subunit  aggregation  by sequestering magnesium.
                     116:384–389, 2005.                                    A mechanism for the decreased PRPP synthetase activity in hereditary erythrocyte
                    397. Ristoff E: Inborn errors of GSH metabolism, in Glutathione and Sulfur Amino Acids in   pyrimidine 5′-nucleotidase deficiency. Biochim Biophys Acta 994:81–88, 1989.
                     Human Health and Disease, edited by Masella R, Mazza G, pp 343–362. John Wiley &     429. Zerez CR, Lachant NA, Tanaka KR: Decrease in subunit aggregation of phosphori-
                     Sons, New York, 2009.                                 bosylpyrophosphate synthetase: A mechanism for decreased nucleotide concentrations
                    398. Riudor E, Arranz JA, Alvarez R, et al: Massive 5-oxoprolinuria with normal 5-oxoprolinase   in pyruvate kinase-deficient human erythrocytes. Blood 68:1024–1029, 1986.
                     and glutathione synthetase activities. J Inherit Metab Dis 24:404–406, 2001.    430. Lachant NA, Zerez CR, Tanaka KR: Pyrimidine nucleoside monophosphate kinase
                    399. Mayatepek E: 5-Oxoprolinuria in patients with and without defects in the gamma-glu-  hyperactivity in hereditary erythrocyte pyrimidine 5′-nucleotidase deficiency.  Br
                     tamyl cycle. Eur J Pediatr 158:221–225, 1999.         J Haematol 66:91–96, 1987.
                    400. Pederzolli CD, Mescka CP, Zandona BR, et al: Acute administration of 5-oxoproline     431. Valentine WN, Anderson HM, Paglia DE, et al: Studies on human erythrocyte nucleo-
                     induces oxidative damage to lipids and proteins and impairs antioxidant defenses in   tide metabolism. II. Nonspherocytic hemolytic anemia, high red cell ATP, and ribose-
                     cerebral cortex and cerebellum of young rats. Metab Brain Dis 25:145–154, 2010.  phosphate pyrophosphokinase (RPK, E.C.2.7.6.1) deficiency. Blood 39:674–684, 1972.
                    401. Simon E, Vogel M, Fingerhut R, et al: Diagnosis of glutathione synthetase deficiency in     432. Oda E, Oda S, Tomoda A, et al: Hemolytic anemia in hereditary pyrimidine 5′-
                     newborn screening. J Inherit Metab Dis 32 Suppl 1:S269–S272, 2009.  nucleotidase deficiency. II. Effect of pyrimidine nucleotides and their derivatives on gly-
                    402. Burstedt MS, Ristoff E, Larsson A, et al: Rod-cone dystrophy with maculopathy in   colytic and pentose phosphate shunt enzyme activity. Clin Chim Acta 141:93–100, 1984.
                     genetic glutathione synthetase deficiency: A morphologic and electrophysiologic study.     433. Chiarelli LR, Morera SM, Galizzi A, et al: Molecular basis of pyrimidine 5′-nucleotidase
                     Ophthalmology 116:324–331, 2009.                      deficiency caused by 3 newly identified missense mutations (c.187T>C, c.469G>C and
                    403. Winkler A, Njalsson R, Carlsson K, et al: Glutathione is essential for early embryo-  c.740T>C) and a tabulation of known mutations. Blood Cells Mol Dis 40:295–301, 2008.
                     genesis—analysis of a glutathione synthetase knockout mouse. Biochem Biophys Res     434. Warang P, Kedar P, Kar R, et al: New missense homozygous mutation (Q270Ter) in the
                     Commun 412:121–126, 2011.                             pyrimidine 5′ nucleotidase type I-related gene in two Indian families with hereditary
                    404. Kamerbeek NM, van Zwieten R, de Boer M, et al: Molecular basis of glutathione reduc-  non-spherocytic hemolytic anemia. Ann Hematol 92:715–717, 2013.
                     tase deficiency in human blood cells. Blood 109:3560–3566, 2007.    435. Chiarelli LR, Bianchi P, Fermo E, et al: Functional analysis of pyrimidine 5′-nucleotidase
                    405. Loos H, Roos D, Weening R, et al: Familial deficiency of glutathione reductase in   mutants causing nonspherocytic hemolytic anemia. Blood 105:3340–3345, 2005.
                     human blood cells. Blood 48:53–62, 1976.             436. David O, Vota MG, Piga A, et al: Pyrimidine 5′-nucleotidase acquired deficiency in
                    406. Gallo V, Schwarzer E, Rahlfs S, et al: Inherited glutathione reductase deficiency and   beta-thalassemia: Involvement of enzyme-SH groups in the inactivation process. Acta
                     Plasmodium falciparum malaria–a case study. PLoS One 4:e7303, 2009.  Haematol 82:69–74, 1989.
                    407. Miwa S, Fujii H, Tani K, et al: Red cell adenylate kinase deficiency associated with     437. Vives Corrons JL, Pujades MA, Aguilari Bascompte JL, et al: Pyrimidine 5′nucleotidase
                     hereditary nonspherocytic hemolytic anemia: Clinical and biochemical studies. Am J   and several other red cell enzyme activities in beta-thalassaemia trait. Br J Haematol
                     Hematol 14:325–333, 1983.                             56:483–494, 1984.
                    408. Matsuura S, Igarashi M, Tanizawa Y, et al: Human adenylate kinase deficiency associ-    438. Dern RJ, Beutler E, Alving AS: The hemolytic effect of primaquine. V. Primaquine sen-
                     ated with hemolytic anemia. A single base substitution affecting solubility and catalytic   sitivity as a manifestation of a multiple drug sensitivity. J Lab Clin Med 45:30–39, 1955.
                     activity of the cytosolic adenylate kinase. J Biol Chem 264:10148–10155, 1989.    439. Cohen G, Hochstein P: Generation of hydrogen peroxide in erythrocytes by hemolytic
                    409. Qualtieri A, Pedace V, Bisconte MG, et al: Severe erythrocyte adenylate kinase defi-  agents. Biochemistry 3:895–900, 1964.
                     ciency due to homozygous A—>G substitution at codon 164 of human AK1 gene asso-    440. Kosower NS, Song KR, Kosower EM, et al: Glutathione. II. Chemical aspects of azoester
                     ciated with chronic haemolytic anaemia. Br J Haematol 99:770–776, 1997.  procedure for oxidation to disulfide. Biochim Biophys Acta 192:8–14, 1969.
                    410. Bianchi P, Zappa M, Bredi E, et al: A case of complete adenylate kinase deficiency due to     441. Birchmeier W, Tuchschmid PE, Winterhalter H: Comparison of human hemoglobin A
                     a nonsense mutation in AK-1 gene (Arg 107 —> Stop, CGA —> TGA) associated with   carrying glutathione as a mixed disulfide with the naturally occurring human hemoglo-
                     chronic haemolytic anaemia. Br J Haematol 105:75–79, 1999.  bin A3. Biochemistry 12:3667–3672, 1973.
                    411. Corrons JL, Garcia E, Tusell JJ, et al: Red cell adenylate kinase deficiency: Molecu-    442. Rachmilewitz EA, Harari E, Winterhalter KH: Separation of alpha- and beta-chains of
                     lar study of 3 new mutations (118G>A, 190G>A, and GAC deletion) associated with   hemoglobin A by acetylphenylhydrazine. Biochim Biophys Acta 371:402–407, 1974.
                     hereditary nonspherocytic hemolytic anemia. Blood 102:353–356, 2003.    443. Kirkman HN, Gaetani GF: Catalase: A tetrameric enzyme with four tightly bound mol-
                    412. Fermo E, Bianchi P, Vercellati C, et al: A new variant of adenylate kinase (delG138)   ecules of NADPH. Proc Natl Acad Sci U S A 81:4343–4347, 1984.
                     associated with severe hemolytic anemia. Blood Cells Mol Dis 33:146–149, 2004.    444. Gaetani GF, Rolfo M, Arena S, et al: Active involvement of catalase during hemolytic
                    413. Lachant NA, Zerez CR, Barredo J, et al: Hereditary erythrocyte adenylate kinase defi-  crises of favism. Blood 88:1084–1088, 1996.
                     ciency: A defect of multiple phosphotransferases? Blood 77:2774–2784, 1991.    445. Rifkind RA: Heinz body anemia: An ultrastructural study. II. Red cell sequestration and
                    414. Toren A, Brok-Simoni F, Ben-Bassat I, et al: Congenital haemolytic anaemia associated   destruction. Blood 26:433–448, 1965.
                     with adenylate kinase deficiency. Br J Haematol 87:376–380, 1994.    446. Ho YS, Xiong Y, Ma W, et al: Mice lacking catalase develop normally but show differen-
                    415. Valentine WN, Paglia DE, Tartaglia AP, et al: Hereditary hemolytic anemia with   tial sensitivity to oxidant tissue injury. J Biol Chem 279:32804–32812, 2004.
                     increased red cell adenosine deaminase (45- to 70-fold) and decreased adenosine tri-    447. Cheah FC, Peskin AV, Wong FL, et al: Increased basal oxidation of peroxiredoxin 2
                     phosphate. Science 195:783–785, 1977.                 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient
                    416. Perignon JL, Hamet M, Buc HA, et al: Biochemical study of a case of hemolytic anemia   erythrocytes from newborn infants. FASEB J 28:3205–3210, 2014.
                     with increased (85 fold) red cell adenosine deaminase. Clin Chim Acta 124:205–212, 1982.    448. Bunn HE: F., Jandl JH: Exchange of heme among hemoglobin molecules. Proc Natl
                    417. Chottiner EG, Ginsburg D, Tartaglia AP, et al: Erythrocyte adenosine deaminase over-  Acad Sci U S A 56:974–978, 1966.
                     production in hereditary hemolytic anemia. Blood 74:448–453, 1989.    449. Jandl JH: The Heinz body hemolytic anemias. Ann Intern Med 58:702–709, 1963.
                    418. Fujii H, Miwa S, Suzuki K: Purification and properties of adenosine deaminase in     450. Beutler E: Abnormalities of glycolysis (HMP shunt). Bibl Haematol 29:146–157, 1968.
                     normal and hereditary hemolytic anemia with increased red cell activity. Hemoglobin     451. Baehner RL, Nathan DG, Castle WB: Oxidant injury of Caucasian glucose-6-phosphate
                     4:693–705, 1980.                                      dehydrogenase-deficient red blood cells by phagocytosing leukocytes during infection.
                    419. Chen EH, Tartaglia AP, Mitchell BS: Hereditary overexpression of adenosine deaminase   J Clin Invest 50:2466–2473, 1971.
                     in erythrocytes: Evidence for a cis-acting mutation. Am J Hum Genet 53:889–893, 1993.    452. Arese P, De Flora A. Denaturation of normal and abnormal erythrocytes II. Pathophys-
                    420. Zanella A, Bianchi P, Fermo E, et al: Hereditary pyrimidine 5′-nucleotidase deficiency:   iology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol
                     From genetics to clinical manifestations. Br J Haematol 133:113–123, 2006.  27:1–40, 1990.
                    421. Rees DC, Duley JA, Marinaki AM: Pyrimidine 5′ nucleotidase deficiency. Br J Haematol     453. Stamatoyannopoulos G, Fraser GR, Motulsky AG, et al: On the familial predisposition
                     120:375–383, 2003.                                    to favism. Am J Hum Genet 18:253–263, 1966.
                    422. Vives i Corrons JL: Chronic non-spherocytic haemolytic anaemia due to congenital     454. Cassimos CH: R., Malaka-Zafiriu K, Tsiures J: Urinary d-glucaric acid excretion in nor-
                     pyrimidine 5′ nucleotidase deficiency: 25 years later. Baillieres Best Pract Res Clin Hae-  mal and G6PD deficient children with favism. J. Pediatrics 84:871–872, 1974.
                     matol 13:103–118, 2000.                              455. Bottini E, Bottini FG, Borgiani P, et al: Association between ACP1 and favism: A possi-
                    423. Swanson MS, Markin RS, Stohs SJ, et al: Identification of cytidine diphosphodiesters in   ble biochemical mechanism. Blood 89:2613–2615, 1997.
                     erythrocytes from a patient with pyrimidine nucleotidase deficiency. Blood 63:665–670,     456. Fiorelli  G, Podda  M, Corrias A, et  al: The relevance of immune reactions in acute
                     1984.                                                 favism. Acta Haematol. 51:211–218, 1974.
                    424. Tomoda A, Noble NA, Lachant NA, et al: Hemolytic anemia in hereditary pyrimidine     457. Turrini F, Naitana A, Mannuzzu L, et al: Increased red cell calcium, decreased calcium
                     5’-nucleotidase deficiency: Nucleotide inhibition of G6PD and the pentose phosphate   adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis
                     shunt. Blood 60:1212–1218, 1982.                      in glucose-6-phosphate dehydrogenase-deficient (Mediterranean variant) individuals.
                    425. David  O,  Ramenghi  U, Camaschella  C,  et  al: Inhibition  of  hexose monophosphate   Blood 66:302–305, 1985.
                     shunt in young erythrocytes by pyrimidine nucleotides in hereditary pyrimidine 5′     458. De Flora A, Benatti U, Guida L, et al: Favism: Disordered erythrocyte calcium homeo-
                     nucleotidase deficiency. Eur J Haematol 47:48–54, 1991.  stasis. Blood 66:294–297, 1985.







          Kaushansky_chapter 47_p0689-0724.indd   719                                                                   9/17/15   6:45 PM
   739   740   741   742   743   744   745   746   747   748   749