Page 740 - Williams Hematology ( PDFDrive )
P. 740
714 Part VI: The Erythrocyte Chapter 47: Erythrocyte Enzyme Disorders 715
137. Kanno T, Maekawa M: Lactate dehydrogenase M-subunit deficiencies: Clinical features, 169. Wamelink MM, Gruning NM, Jansen EE, et al: The difference between rare and excep-
metabolic background, and genetic heterogeneities. Muscle Nerve Suppl 3:S54–S60, tionally rare: Molecular characterization of ribose 5-phosphate isomerase deficiency.
1995. J Mol Med (Berl) 88:931–939, 2010.
138. Maekawa M, Sudo K, Nagura K, et al: Population screening of lactate dehydrogenase 170. Huck JH, Verhoeven NM, Struys EA, et al: Ribose-5-phosphate isomerase deficiency:
deficiencies in Fukuoka Prefecture in Japan and molecular characterization of three inde- New inborn error in the pentose phosphate pathway associated with a slowly progres-
pendent mutations in the lactate dehydrogenase-B(H) gene. Hum Genet 93:74–76, 1994. sive leukoencephalopathy. Am J Hum Genet 74:745–751, 2004.
139. Persico MG, Viglietto G, Martini G, et al: Isolation of human glucose-6-phosphate 171. Dische Z, Bishop C, Surgenor DM: The pentose phosphate metabolism in red cells, in
dehydrogenase (G6PD) cDNA clones: Primary structure of the protein and unusual 5′ The Red Blood Cell, pp 189–209. Academic Press, New York, 1964.
non-coding region. Nucleic Acids Res 14:2511–2522, 1986. 172. Brownstone YS, Denstedt OF: The pentose phosphate metabolic pathway in the human
140. Kirkman HN, Hendrickson EM: Glucose 6-phosphate dehydrogenase from human erythrocyte. II. The transketolase and transaldolase activity of the human erythrocyte.
erythrocytes. II. Subactive states of the enzyme from normal persons. J Biol Chem Can J Biochem 39:533–545, 1961.
237:2371–2376, 1962. 173. Kochetov GA, Solovjeva ON: Structure and functioning mechanism of transketolase.
141. Bonsignore A, Cancedda R, Nicolini A, et al: Metabolism of human erythrocyte Biochim Biophys Acta 1844:1608–1618, 2014.
glucose-6-phosphate dehydrogenase. VI. Interconversion of multiple molecular forms. 174. Soukaloun D, Lee SJ, Chamberlain K, et al: Erythrocyte transketolase activity, mark-
Arch Biochem Biophys 147:493–501, 1971. ers of cardiac dysfunction and the diagnosis of infantile beriberi. PLoS Negl Trop Dis
142. Canepa L, Ferraris AM, Miglino M, et al: Bound and unbound pyridine dinucleotides 5:e971, 2011.
in normal and glucose- 6-phosphate dehydrogenase-deficient erythrocytes. Biochim 175. Wamelink MM, Struys EA, Jakobs C: The biochemistry, metabolism and inherited
Biophys Acta 1074:101–104, 1991. defects of the pentose phosphate pathway: A review. J Inherit Metab Dis 31:703–717,
143. Au SW, Gover S, Lam VM, Adams MJ: Human glucose-6-phosphate dehydrogenase: 2008.
+
The crystal structure reveals a structural NADP molecule and provides insights into 176. Verhoeven NM, Huck JH, Roos B, et al: Transaldolase deficiency: Liver cirrhosis asso-
enzyme deficiency. Structure 8:293–303, 2000. ciated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet
144. Cohen P, Rosemeyer MA: Subunit interactions of glucose-6-phosphate dehydrogenase 68:1086–1092, 2001.
from human erythrocytes. Eur J Biochem 8:8–15, 1969. 177. Eyaid W, Al Harbi T, Anazi S, et al: Transaldolase deficiency: Report of 12 new cases and
145. Wrigley NG, Heather JV, Bonsignore A, et al: Human erythrocyte glucose 6- further delineation of the phenotype. J Inherit Metab Dis 36:997–1004, 2013.
phosphate dehydrogenase: Electron microscope studies on structure and interconver- 178. Tylki-Szymanska A, Wamelink MM, Stradomska TJ, et al: Clinical and molecular char-
sion of tetramers, dimers and monomers. J Mol Biol 68:483–499, 1972. acteristics of two transaldolase-deficient patients. Eur J Pediatr 173:1679–1682, 2014.
146. Yoshida A: Hemolytic anemia and G6PD deficiency. Science 179:532–537, 1973. 179. Valayannopoulos V, Verhoeven NM, Mention K, et al: Transaldolase deficiency: A new
147. Ben-Bassat I, Beutler E: Inhibition by ATP of erythrocyte glucose-6-phosphate dehy- cause of hydrops fetalis and neonatal multi-organ disease. J Pediatr 149:713–717, 2006.
drogenase variants. Proc Soc Exp Biol Med 142:410–411, 1973. 180. Wamelink MM, Struys EA, Salomons GS, et al: Transaldolase deficiency in a two-year-
148. Zimran A, Torem S, Beutler E: The in vivo ageing of red cell enzymes: Direct evidence old boy with cirrhosis. Mol Genet Metab 94:255–258, 2008.
of biphasic decay from polycythaemic rabbits with reticulocytosis. Br J Haematol 181. Beutler E, Guinto E: The reduction of glyceraldehyde by human erythrocytes. L-
69:67–70, 1988. hexonate dehydrogenase activity. J Clin Invest 53:1258–1264, 1974.
149. Cosgrove MS, Naylor C, Paludan S, et al: On the mechanism of the reaction catalyzed 182. Das B, Srivastava SK: Purification and properties of aldose reductase and aldehyde
by glucose 6-phosphate dehydrogenase. Biochemistry 37:2759–2767, 1998. reductase II from human erythrocyte. Arch Biochem Biophys. 238:670–679, 1985.
150. Lee WT, Levy HR: Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehy- 183. Reddy GB, Satyanarayana A, Balakrishna N, et al: Erythrocyte aldose reductase activity
drogenase participates in substrate binding through charge-charge interaction. Protein and sorbitol levels in diabetic retinopathy. Mol Vis 14:593–601, 2008.
Sci 1:329–334, 1992. 184. Gupta P, Verma N, Bhattacharya S, et al: Association of diabetic autonomic neuropathy
151. Bautista JM, Mason PJ, Luzzatto L: Human glucose-6-phosphate dehydrogenase. Lysine with red blood cell aldose reductase activity. Can J Diabetes 38:22–25, 2014.
205 is dispensable for substrate binding but essential for catalysis. FEBS Lett 366:61–64, 185. van Solinge WW, van Wijk R: Disorders of red cells resulting from enzyme abnormal-
1995. ities, in Williams Hematology, 8th ed, pp 647–674, edited by Kaushansky KJ, Lichtman
152. Battistuzzi G, D’Urso M, Toniolo D, et al: Tissue-specific levels of human glucose-6- MA, Beutler E, Kipps TJ, Selighsohn U, Prchal JT. McGraw-Hill, New York, 2010.
phosphate dehydrogenase correlate with methylation of specific sites at the 3′ end of 186. Fargo JH, Kratz CP, Giri N, et al: Erythrocyte adenosine deaminase: Diagnostic value
the gene. Proc Natl Acad Sci U S A 82:1465–1469, 1985. for Diamond-Blackfan anaemia. Br J Haematol 160:547–554, 2013.
153. Toniolo D, D’Urso M, Martini G, et al: Specific methylation pattern at the 3′ end of 187. Dimant E, Landberg E, London IM: The metabolic behavior of reduced glutathione in
the human housekeeping gene for glucose 6-phosphate dehydrogenase. EMBO J 3: human and avian erythrocytes. J Biol Chem 213:769–776, 1955.
1987–1995, 1984. 188. van’t Erve TJ, Wagner BA, Ryckman KK, et al: The concentration of glutathione in
154. Amini F, Ismail EA: R. 3′-UTR variations and G6PD deficiency. J Hum Genet 58: human erythrocytes is a heritable trait. Free Radic Biol Med 65:742–749, 2013.
189–194, 2013. 189. Ellison I, Richie JP Jr: Mechanisms of glutathione disulfide efflux from erythrocytes.
155. Beutler E: Genetics of glucose-6-phosphate dehydrogenase deficiency. Semin Hematol Biochem Pharmacol 83:164–169, 2012.
27:137–164, 1990. 190. Gipp JJ, Chang C, Mulcahy RT: Cloning and nucleotide sequence of a full-length cDNA
156. Luzzatto L, Mehta A: Glucose 6-phosphate dehydrogenase deficiency, in The Metabolic for human liver gamma-glutamylcysteine synthetase. Biochem Biophys Res Commun
and Molecular Basis of Inherited Disease, 7th ed, edited by Scriver C, Beaudet AL, Sly 185:29–35, 1992.
WS, Valle D, pp 3367–3398. McGraw Hill, New York, 1995. 191. Gipp JJ, Bailey HH, Mulcahy RT: Cloning and sequencing of the cDNA for the light
157. Mason PJ: New insights into G6PD deficiency. Br J Haematol 94:585–591, 1996. subunit of human liver gamma-glutamylcysteine synthetase and relative mRNA levels
158. Mason PJ, Bautista JM, Gilsanz F: G6PD deficiency: The genotype-phenotype associa- for heavy and light subunits in human normal tissues. Biochem Biophys Res Commun
tion. Blood Rev 21:267–283, 2007. 206:584–589, 1995.
159. Cappellini MD, Fiorelli G: Glucose-6-phosphate dehydrogenase deficiency. Lancet 192. Biterova EI, Barycki JJ: Mechanistic details of glutathione biosynthesis revealed by
371:64–74, 2008. crystal structures of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem
160. Minucci A, Moradkhani K, Hwang MJ, et al: Glucose-6-phosphate dehydrogenase 284:32700–32708, 2009.
(G6PD) mutations database: Review of the “old” and update of the new mutations. 193. Kumar S, Kasturia N, Sharma A, et al: Redox-dependent stability of the gamma-
Blood Cells Mol Dis 48:154–165, 2012. glutamylcysteine synthetase enzyme of Escherichia coli: A novel means of redox regula-
161. Beutler E, Kuhl W: Limiting role of 6-phosphogluconolactonase in erythrocyte hexose tion. Biochem J 449:783–794, 2013.
monophosphate pathway metabolism. J Lab Clin Med 106:573–577, 1985. 194. Krejsa CM, Franklin CC, White CC, et al: Rapid activation of glutamate cysteine ligase
162. Rakitzis ET, Papandreou P: Kinetic analysis of 6-phosphogluconolactone hydrolysis in following oxidative stress. J Biol Chem 285:16116–16124, 2010.
hemolysates. Biochem Mol Biol Int 37:747–755, 1995. 195. Nichenametla SN, Lazarus P, Richie JP Jr: A GAG trinucleotide-repeat polymor-
163. Beutler E, Kuhl W, Gelbart T: 6-Phosphogluconolactonase deficiency, a hereditary ery- phism in the gene for glutathione biosynthetic enzyme, GCLC, affects gene expression
throcyte enzyme deficiency: Possible interaction with glucose-6-phosphate dehydroge- through translation. FASEB J 25:2180–2187, 2011.
nase deficiency. Proc Natl Acad Sci U S A 82:3876–3878, 1985. 196. Gali RR, Board PG: Sequencing and expression of a cDNA for human glutathione syn-
164. Thorburn DR, Kuchel PW: Computer simulation of the metabolic consequences of the thetase. Biochem J 310(Pt 1):353–358, 1995.
combined deficiency of 6-phosphogluconolactonase and glucose-6-phosphate dehy- 197. Polekhina G, Board PG, Gali RR, et al: Molecular basis of glutathione synthetase defi-
drogenase in human erythrocytes. J Lab Clin Med 110:70–74, 1987. ciency and a rare gene permutation event. EMBO J 18:3204–3213, 1999.
165. Shih L, Justice P, Hsia DY: Purification and characterization of genetic variants of 198. Cohen G, Hochstein P: Glutathione peroxidase: The primary agent for the elimination
6-phosphogluconate dehydrogenase. Biochem Genet 1:359–371, 1968. of hydrogen peroxide in erythrocytes. Biochemistry 2:1420–1428, 1963.
166. Parr CW, Fitch LI: Inherited quantitative variations of human phosphogluconate dehy- 199. Johnson RM, Goyette G, Jr, Ravindranath Y, et al: Red cells from glutathione peroxi-
drogenase. Ann Hum Genet. 30:339–353, 1967. dase-1-deficient mice have nearly normal defenses against exogenous peroxides. Blood
167. Caprari P, Caforio MP, Cianciulli P, et al: 6-Phosphogluconate dehydrogenase defi- 96:1985–1988, 2000.
ciency in an Italian family. Ann Hematol 80:41–44, 2001. 200. Rotruck JT, Pope AL, Ganther HE, et al: Selenium: Biochemical role as a component of
168. Vives Corrons JL, Colomer D, Pujades A, et al: Congenital 6-phosphogluconate dehy- glutathione peroxidase. Science 179:588–590, 1973.
drogenase (6PGD) deficiency associated with chronic hemolytic anemia in a Spanish 201. Beutler E, Matsumoto F: Ethnic variation in red cell glutathione peroxidase activity.
family. Am J Hematol 53:221–227, 1996. Blood 46:103–110, 1975.
Kaushansky_chapter 47_p0689-0724.indd 715 9/17/15 6:45 PM

