Page 740 - Williams Hematology ( PDFDrive )
P. 740

714  Part VI:  The Erythrocyte                                   Chapter 47:  Erythrocyte Enzyme Disorders            715




                    137. Kanno T, Maekawa M: Lactate dehydrogenase M-subunit deficiencies: Clinical features,     169. Wamelink MM, Gruning NM, Jansen EE, et al: The difference between rare and excep-
                     metabolic background, and genetic heterogeneities.  Muscle Nerve Suppl 3:S54–S60,   tionally rare: Molecular characterization of ribose 5-phosphate isomerase deficiency.
                     1995.                                                 J Mol Med (Berl) 88:931–939, 2010.
                    138. Maekawa M, Sudo K, Nagura K, et al: Population screening of lactate dehydrogenase     170. Huck JH, Verhoeven NM, Struys EA, et al: Ribose-5-phosphate isomerase deficiency:
                     deficiencies in Fukuoka Prefecture in Japan and molecular characterization of three inde-  New inborn error in the pentose phosphate pathway associated with a slowly progres-
                     pendent mutations in the lactate dehydrogenase-B(H) gene. Hum Genet 93:74–76, 1994.  sive leukoencephalopathy. Am J Hum Genet 74:745–751, 2004.
                    139. Persico MG, Viglietto G, Martini G, et al: Isolation of human glucose-6-phosphate     171. Dische Z, Bishop C, Surgenor DM: The pentose phosphate metabolism in red cells, in
                     dehydrogenase (G6PD) cDNA clones: Primary structure of the protein and unusual 5′   The Red Blood Cell, pp 189–209. Academic Press, New York, 1964.
                     non-coding region. Nucleic Acids Res 14:2511–2522, 1986.    172. Brownstone YS, Denstedt OF: The pentose phosphate metabolic pathway in the human
                    140. Kirkman HN, Hendrickson EM: Glucose 6-phosphate dehydrogenase from human   erythrocyte. II. The transketolase and transaldolase activity of the human erythrocyte.
                     erythrocytes. II. Subactive states of the enzyme from normal persons.  J Biol Chem   Can J Biochem 39:533–545, 1961.
                     237:2371–2376, 1962.                                 173. Kochetov GA, Solovjeva ON: Structure and functioning mechanism of transketolase.
                    141. Bonsignore A, Cancedda R, Nicolini A, et al: Metabolism of human erythrocyte    Biochim Biophys Acta 1844:1608–1618, 2014.
                     glucose-6-phosphate dehydrogenase. VI. Interconversion of multiple molecular forms.     174. Soukaloun D, Lee SJ, Chamberlain K, et al: Erythrocyte transketolase activity, mark-
                     Arch Biochem Biophys 147:493–501, 1971.               ers of cardiac dysfunction and the diagnosis of infantile beriberi. PLoS Negl Trop Dis
                    142. Canepa L, Ferraris AM, Miglino M, et al: Bound and unbound pyridine dinucleotides   5:e971, 2011.
                     in normal and glucose- 6-phosphate dehydrogenase-deficient erythrocytes.  Biochim     175. Wamelink MM, Struys EA, Jakobs C: The biochemistry, metabolism and inherited
                     Biophys Acta 1074:101–104, 1991.                      defects of the pentose phosphate pathway: A review. J Inherit Metab Dis 31:703–717,
                    143. Au SW, Gover S, Lam VM, Adams MJ: Human glucose-6-phosphate dehydrogenase:   2008.
                                                +
                     The crystal structure reveals a structural NADP  molecule and provides insights into     176. Verhoeven NM, Huck JH, Roos B, et al: Transaldolase deficiency: Liver cirrhosis asso-
                     enzyme deficiency. Structure 8:293–303, 2000.         ciated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet
                    144. Cohen P, Rosemeyer MA: Subunit interactions of glucose-6-phosphate dehydrogenase   68:1086–1092, 2001.
                     from human erythrocytes. Eur J Biochem 8:8–15, 1969.    177. Eyaid W, Al Harbi T, Anazi S, et al: Transaldolase deficiency: Report of 12 new cases and
                    145. Wrigley NG, Heather JV, Bonsignore A, et al: Human erythrocyte glucose 6-   further delineation of the phenotype. J Inherit Metab Dis 36:997–1004, 2013.
                     phosphate dehydrogenase: Electron microscope studies on structure and interconver-    178. Tylki-Szymanska A, Wamelink MM, Stradomska TJ, et al: Clinical and molecular char-
                     sion of tetramers, dimers and monomers. J Mol Biol 68:483–499, 1972.  acteristics of two transaldolase-deficient patients. Eur J Pediatr 173:1679–1682, 2014.
                    146. Yoshida A: Hemolytic anemia and G6PD deficiency. Science 179:532–537, 1973.    179. Valayannopoulos V, Verhoeven NM, Mention K, et al: Transaldolase deficiency: A new
                    147. Ben-Bassat I, Beutler E: Inhibition by ATP of erythrocyte glucose-6-phosphate dehy-  cause of hydrops fetalis and neonatal multi-organ disease. J Pediatr 149:713–717, 2006.
                     drogenase variants. Proc Soc Exp Biol Med 142:410–411, 1973.    180. Wamelink MM, Struys EA, Salomons GS, et al: Transaldolase deficiency in a two-year-
                    148. Zimran A, Torem S, Beutler E: The in vivo ageing of red cell enzymes: Direct evidence   old boy with cirrhosis. Mol Genet Metab 94:255–258, 2008.
                     of biphasic decay from polycythaemic rabbits with reticulocytosis.  Br J Haematol     181. Beutler  E,  Guinto E:  The  reduction  of glyceraldehyde  by human  erythrocytes.  L-
                     69:67–70, 1988.                                       hexonate dehydrogenase activity. J Clin Invest 53:1258–1264, 1974.
                    149. Cosgrove MS, Naylor C, Paludan S, et al: On the mechanism of the reaction catalyzed     182. Das  B, Srivastava  SK:  Purification and  properties  of  aldose  reductase and  aldehyde
                     by glucose 6-phosphate dehydrogenase. Biochemistry 37:2759–2767, 1998.  reductase II from human erythrocyte. Arch Biochem Biophys. 238:670–679, 1985.
                    150. Lee WT, Levy HR: Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehy-    183. Reddy GB, Satyanarayana A, Balakrishna N, et al: Erythrocyte aldose reductase activity
                     drogenase participates in substrate binding through charge-charge interaction. Protein   and sorbitol levels in diabetic retinopathy. Mol Vis 14:593–601, 2008.
                     Sci 1:329–334, 1992.                                 184. Gupta P, Verma N, Bhattacharya S, et al: Association of diabetic autonomic neuropathy
                    151. Bautista JM, Mason PJ, Luzzatto L: Human glucose-6-phosphate dehydrogenase. Lysine   with red blood cell aldose reductase activity. Can J Diabetes 38:22–25, 2014.
                     205 is dispensable for substrate binding but essential for catalysis. FEBS Lett 366:61–64,     185. van Solinge WW, van Wijk R: Disorders of red cells resulting from enzyme abnormal-
                     1995.                                                 ities, in Williams Hematology, 8th ed, pp 647–674, edited by Kaushansky KJ, Lichtman
                    152. Battistuzzi G, D’Urso M, Toniolo D, et al: Tissue-specific levels of human glucose-6-  MA, Beutler E, Kipps TJ, Selighsohn U, Prchal JT. McGraw-Hill, New York, 2010.
                     phosphate dehydrogenase correlate with methylation of specific sites at the 3′ end of     186. Fargo JH, Kratz CP, Giri N, et al: Erythrocyte adenosine deaminase: Diagnostic value
                     the gene. Proc Natl Acad Sci U S A 82:1465–1469, 1985.  for Diamond-Blackfan anaemia. Br J Haematol 160:547–554, 2013.
                    153. Toniolo D, D’Urso M, Martini G, et al: Specific methylation pattern at the 3′ end of     187. Dimant E, Landberg E, London IM: The metabolic behavior of reduced glutathione in
                     the human housekeeping gene for glucose 6-phosphate dehydrogenase.  EMBO J 3:   human and avian erythrocytes. J Biol Chem 213:769–776, 1955.
                     1987–1995, 1984.                                     188. van’t Erve TJ, Wagner BA, Ryckman KK, et al: The concentration of glutathione in
                    154. Amini F, Ismail EA: R. 3′-UTR variations and G6PD deficiency.  J Hum Genet 58:   human erythrocytes is a heritable trait. Free Radic Biol Med 65:742–749, 2013.
                     189–194, 2013.                                       189. Ellison I, Richie JP Jr: Mechanisms of glutathione disulfide efflux from erythrocytes.
                    155. Beutler E: Genetics of glucose-6-phosphate dehydrogenase deficiency. Semin Hematol   Biochem Pharmacol 83:164–169, 2012.
                     27:137–164, 1990.                                    190. Gipp JJ, Chang C, Mulcahy RT: Cloning and nucleotide sequence of a full-length cDNA
                    156. Luzzatto L, Mehta A: Glucose 6-phosphate dehydrogenase deficiency, in The Metabolic   for human liver gamma-glutamylcysteine synthetase. Biochem Biophys Res Commun
                     and Molecular Basis of Inherited Disease, 7th ed, edited by Scriver C, Beaudet AL, Sly   185:29–35, 1992.
                     WS, Valle D, pp 3367–3398. McGraw Hill, New York, 1995.    191. Gipp JJ, Bailey HH, Mulcahy RT: Cloning and sequencing of the cDNA for the light
                    157. Mason PJ: New insights into G6PD deficiency. Br J Haematol 94:585–591, 1996.  subunit of human liver gamma-glutamylcysteine synthetase and relative mRNA levels
                    158. Mason PJ, Bautista JM, Gilsanz F: G6PD deficiency: The genotype-phenotype associa-  for heavy and light subunits in human normal tissues. Biochem Biophys Res Commun
                     tion. Blood Rev 21:267–283, 2007.                     206:584–589, 1995.
                    159. Cappellini MD, Fiorelli G: Glucose-6-phosphate dehydrogenase deficiency.  Lancet     192. Biterova EI, Barycki JJ: Mechanistic details of glutathione biosynthesis revealed by
                     371:64–74, 2008.                                      crystal structures of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem
                    160. Minucci A, Moradkhani K, Hwang MJ, et al: Glucose-6-phosphate dehydrogenase   284:32700–32708, 2009.
                     (G6PD) mutations database: Review of the “old” and update of the new mutations.     193. Kumar S, Kasturia N, Sharma A, et al: Redox-dependent stability of the gamma-
                     Blood Cells Mol Dis 48:154–165, 2012.                 glutamylcysteine synthetase enzyme of Escherichia coli: A novel means of redox regula-
                    161. Beutler E, Kuhl W: Limiting role of 6-phosphogluconolactonase in erythrocyte hexose   tion. Biochem J 449:783–794, 2013.
                     monophosphate pathway metabolism. J Lab Clin Med 106:573–577, 1985.    194. Krejsa CM, Franklin CC, White CC, et al: Rapid activation of glutamate cysteine ligase
                    162. Rakitzis ET, Papandreou P: Kinetic analysis of 6-phosphogluconolactone hydrolysis in   following oxidative stress. J Biol Chem 285:16116–16124, 2010.
                     hemolysates. Biochem Mol Biol Int 37:747–755, 1995.    195. Nichenametla SN, Lazarus P, Richie JP Jr: A GAG trinucleotide-repeat polymor-
                    163. Beutler E, Kuhl W, Gelbart T: 6-Phosphogluconolactonase deficiency, a hereditary ery-  phism in the gene for glutathione biosynthetic enzyme, GCLC, affects gene expression
                     throcyte enzyme deficiency: Possible interaction with glucose-6-phosphate dehydroge-  through translation. FASEB J 25:2180–2187, 2011.
                     nase deficiency. Proc Natl Acad Sci U S A 82:3876–3878, 1985.    196. Gali RR, Board PG: Sequencing and expression of a cDNA for human glutathione syn-
                    164. Thorburn DR, Kuchel PW: Computer simulation of the metabolic consequences of the   thetase. Biochem J 310(Pt 1):353–358, 1995.
                     combined deficiency of 6-phosphogluconolactonase and glucose-6-phosphate dehy-    197. Polekhina G, Board PG, Gali RR, et al: Molecular basis of glutathione synthetase defi-
                     drogenase in human erythrocytes. J Lab Clin Med 110:70–74, 1987.  ciency and a rare gene permutation event. EMBO J 18:3204–3213, 1999.
                    165. Shih L, Justice P, Hsia DY: Purification and characterization of genetic variants of     198. Cohen G, Hochstein P: Glutathione peroxidase: The primary agent for the elimination
                     6-phosphogluconate dehydrogenase. Biochem Genet 1:359–371, 1968.  of hydrogen peroxide in erythrocytes. Biochemistry 2:1420–1428, 1963.
                    166. Parr CW, Fitch LI: Inherited quantitative variations of human phosphogluconate dehy-    199. Johnson RM, Goyette G, Jr, Ravindranath Y, et al: Red cells from glutathione peroxi-
                     drogenase. Ann Hum Genet. 30:339–353, 1967.           dase-1-deficient mice have nearly normal defenses against exogenous peroxides. Blood
                    167. Caprari P, Caforio MP, Cianciulli P, et al: 6-Phosphogluconate dehydrogenase defi-  96:1985–1988, 2000.
                     ciency in an Italian family. Ann Hematol 80:41–44, 2001.    200. Rotruck JT, Pope AL, Ganther HE, et al: Selenium: Biochemical role as a component of
                    168. Vives Corrons JL, Colomer D, Pujades A, et al: Congenital 6-phosphogluconate dehy-  glutathione peroxidase. Science 179:588–590, 1973.
                     drogenase (6PGD) deficiency associated with chronic hemolytic anemia in a Spanish     201. Beutler E, Matsumoto F: Ethnic variation in red cell glutathione peroxidase activity.
                     family. Am J Hematol 53:221–227, 1996.                Blood 46:103–110, 1975.







          Kaushansky_chapter 47_p0689-0724.indd   715                                                                   9/17/15   6:45 PM
   735   736   737   738   739   740   741   742   743   744   745