Page 743 - Williams Hematology ( PDFDrive )
P. 743

718            Part VI:  The Erythrocyte                                                                                                                                     Chapter 47:  Erythrocyte Enzyme Disorders             719




                 333. Kugler W, Breme K, Laspe P, et al: Molecular basis of neurological dysfunction coupled     362. Manco L, Ribeiro ML: Novel human pathological mutations. Gene symbol: TPI1. Dis-
                  with haemolytic anaemia in human glucose-6-phosphate isomerase (GPI) deficiency.   ease: Triosephosphate isomerase deficiency. Hum Genet 121: 650, 2007.
                  Hum Genet 103:450–454, 1998.                          363. Sarper N, Zengin E, Jakobs C, et al: Mild hemolytic anemia, progressive neuromotor
                 334. Haller JF, Smith C, Liu D, et al: Isolation of novel animal cell lines defective in glycer-  retardation and fatal outcome: A disorder of glycolysis, triose- phosphate isomerase
                  olipid biosynthesis reveals mutations in glucose-6-phosphate isomerase. J Biol Chem   deficiency. Turk J Pediatr 55:198–202, 2013.
                  285:866–877, 2010.                                    364. Schneider A, Westwood B, Yim C, et al: The 1591C mutation in triosephosphate
                 335. Haller JF, Krawczyk SA, Gostilovitch L, et al: Glucose-6-phosphate isomerase defi-  isomerase (TPI) deficiency. Tightly linked polymorphisms and a common haplotype in
                  ciency results in mTOR activation, failed translocation of lipin 1alpha to the nucleus   all known families. Blood Cells Mol Dis 22:115–125, 1996.
                  and hypersensitivity to glucose: Implications for the inherited glycolytic disease. Bio-    365. Zingg BC, Pretsch W, Mohrenweiser HW: Molecular analysis of four ENU induced
                  chim Biophys Acta 1812:1393–1402, 2011.                triosephosphate isomerase null mutants in Mus musculus. Mut Res 328:163–173, 1995.
                 336. Merkle S, Pretsch W: Glucose-6-phosphate isomerase deficiency associated with non-    366. Pretsch  W:  Triosephosphate  isomerase  activity-deficient  mice  show  haemolytic
                  spherocytic hemolytic anemia in the mouse: An animal model for the human disease.   anaemia in homozygous condition. Genet Res (Camb) 91:1–4, 2009.
                  Blood 81:206–213, 1993.                               367. Celotto AM, Frank AC, Seigle JL, et al: Drosophila model of human inherited triose-
                 337. West JD: A genetically defined animal model of anembryonic pregnancy. Hum Reprod   phosphate isomerase deficiency glycolytic enzymopathy. Genetics 174:1237–1246, 2006.
                  8:1316–1323, 1993.                                    368. Roland BP, Stuchul KA, Larsen SB, et al: Evidence of a triosephosphate isomerase non-
                 338. Nakajima H, Raben N, Hamaguchi T, et al: Phosphofructokinase deficiency; past, pres-  catalytic function crucial to behavior and longevity. J Cell Sci 126:3151–3158, 2013.
                  ent and future. Curr Mol Med 2:197–212, 2002.         369. Beutler E: PGK deficiency. Br J Haematol 136:3–11, 2007.
                 339. Raben N, Sherman J, Miller F, et al: A 5′ splice junction mutation leading to exon dele-    370. Tamai M, Kawano T, Saito R, et al: Phosphoglycerate kinase deficiency due to a novel
                  tion in an Ashkenazic Jewish family with phosphofructokinase deficiency (Tarui dis-  mutation (c. 1180A>G) manifesting as chronic hemolytic anemia in a Japanese boy. Int
                  ease). J Biol Chem 268:4963–4967, 1993.                J Hematol 2014.
                 340. Tsujino S, Servidei S, Tonin P, et al: Identification of three novel mutations in non-     371. Valentini G, Maggi M, Pey AL: Protein stability, folding and misfolding in human
                  Ashkenazi  Italian  patients  with muscle phosphofructokinase  deficiency.  Am J Hum   PGK1 deficiency. Biomolecules 3:1030–1052, 2013.
                  Genet 54:812–819, 1994.                               372. Spiegel R, Gomez EA, Akman HO, et al: Myopathic form of phosphoglycerate kinase
                 341. Fujii H, Miwa S: Other erythrocyte enzyme deficiencies associated with non-haemato-  (PGK) deficiency: A new case and pathogenic considerations.  Neuromuscul Disord
                  logical symptoms: Phosphoglycerate kinase and phosphofructokinase deficiency. Bail-  19:207–211, 2009.
                  lieres Best Pract Res Clin Haematol 13:141–148, 2000.    373. Morimoto A, Ueda I, Hirashima Y, et al: A novel missense mutation (1060G –> C) in
                 342. Raben N, Exelbert R, Spiegel R, et al: Functional expression of human mutant phos-  the phosphoglycerate kinase gene in a Japanese boy with chronic haemolytic anaemia,
                  phofructokinase in yeast: Genetic defects in French Canadian and Swiss patients with   developmental delay and rhabdomyolysis. Br J Haematol 122:1009–1013, 2003.
                  phosphofructokinase deficiency. Am J Hum Genet 56:131–141, 1995.    374. Fermo E, Bianchi P, Chiarelli LR, et al: A new variant of phosphoglycerate kinase defi-
                 343. Musumeci O, Bruno C, Mongini T, et al: Clinical features and new molecular find-  ciency (p.I371K) with multiple tissue involvement: Molecular and functional character-
                  ings in muscle phosphofructokinase deficiency (GSD type VII). Neuromuscul Disord   ization. Mol Genet Metab 106:455–461, 2012.
                  22:325–330, 2012.                                     375. Rhodes M, Ashford L, Manes B, et al: Bone marrow transplantation in phosphoglycer-
                 344. Vives Corrons J-L, Koralkova P, Grau JM, et al: First identification of phosphofructok-  ate kinase (PGK) deficiency. Br J Haematol 152:500–502, 2011.
                  inase deficiency in Spain: Identification of a novel homozygous missense mutation in     376. Chiarelli LR, Morera SM, Bianchi P, et al: Molecular insights on pathogenic effects of
                  the PFKM gene. Front Physiol 4: 393, 2013.             mutations causing phosphoglycerate kinase deficiency. PLoS One 7:e32065, 2012.
                 345. Brüser A, Kirchberger J, Schöneberg T: Altered allosteric regulation of muscle 6-phos-    377. Lemarchandel V, Joulin V, Valentin C, et al: Compound heterozygosity in a complete
                  phofructokinase causes Tarui disease. Biochem Biophys Res Commun 427(1):133–137,   erythrocyte bisphosphoglycerate mutase deficiency. Blood 80:2643–2649, 1992.
                  2012.                                                 378. Hoyer JD, Allen SL, Beutler E, et al: Erythrocytosis due to bisphosphoglycerate mutase
                 346. Nichols RC, Rudolphi O, Ek B, et al: Glycogenosis type VII (Tarui disease) in a Swedish   deficiency with concurrent glucose-6-phosphate dehydrogenase (G6PD) deficiency.
                  family: Two novel mutations in muscle phosphofructokinase gene (PFK-M) resulting   Am J Hematol 75:205–208, 2004.
                  in intron retentions. Am J Hum Genet 59:59–65, 1996.    379. Petousi N, Copley RR, Lappin TR, et al: Erythrocytosis associated with a novel missense
                 347. Hamaguchi T, Nakajima H, Noguchi T, et al: Novel missense mutation (W686C) of the   mutation in the BPGM gene. Haematologica 99:e201–e204, 2014.
                  phosphofructokinase-M gene in a Japanese patient with a mild form of glycogenosis     380. Rosa R, Prehu M-O, Beuzard Y, et al: The first case of a complete deficiency of diphos-
                  VII. Hum Mutat 8:273–275, 1996.                        phoglycerate mutase in human erythrocytes. J Clin Invest 62:907–915, 1978.
                 348. Inal Gultekin G, Raj K, Lehman S, et al: Missense mutation in PFKM associated with     381. Konrad PN, Richards F II, Valentine WN, et al: γ-Glutamyl-cysteine synthetase defi-
                  muscle-type phosphofructokinase deficiency in the Wachtelhund dog. Mol Cell Probes   ciency. A cause of hereditary hemolytic anemia. N Engl J Med 286:557–561, 1972.
                  26:243–247, 2012.                                     382. Hirono A, Iyori H, Sekine I, et al: Three cases of hereditary nonspherocytic hemolytic
                 349. Garcia M, Pujol A, Ruzo A, et al: Phosphofructo-1-kinase deficiency leads to a severe   anemia  associated  with  red  blood  cell  glutathione  deficiency.  Blood  87:2071–2074,
                  cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS   1996.
                  Genet 5:e1000615, 2009.                               383. Beutler E, Moroose R, Kramer L, et al: Gamma-glutamylcysteine synthetase deficiency
                 350. Gerber K, Harvey JW, D’Agorne S, et al: Hemolysis, myopathy, and cardiac disease   and hemolytic anemia. Blood 75:271–273, 1990.
                  associated with hereditary phosphofructokinase deficiency in two Whippets. Vet Clin     384. Richards F 2nd, Cooper MR, Pearce LA, et al: Familial spinocerebellar degeneration,
                  Pathol 38:46–51, 2009.                                 hemolytic anemia, and glutathione deficiency. Arch Intern Med 134:534–537, 1974.
                 351. Miwa S, Fujii H, Tani K, et al: Two cases of red cell aldolase deficiency associated with     385. Beutler E, Gelbart T, Kondo T, et al: The molecular basis of a case of γ-glutamylcysteine
                  hereditary hemolytic anemia in a Japanese family. Am J Hematol 11:425–437, 1981.  synthetase deficiency. Blood 94:2890–2894, 1999.
                 352. Kreuder J, Borkhardt A, Repp R, et al: Brief report: Inherited metabolic myopathy and     386. Ristoff E, Augustson C, Geissler J, et al: A missense mutation in the heavy subunit of
                  hemolysis due to a mutation in aldolase A. N Engl J Med 334:1100–1104, 1996.  γ-glutamylcysteine synthetase gene causes hemolytic anemia.  Blood 95:1896–1897,
                 353. Esposito G, Vitagliano L, Costanzo P, et al: Human aldolase A natural mutants: Rela-  2000.
                  tionship between flexibility of the C-terminal region and enzyme function. Biochem J     387. Hamilton D, Wu JH, Alaoui-Jamali M, et al: A novel missense mutation in the γ-
                  380:51–56, 2004.                                       glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic
                 354. Yao DC, Tolan DR, Murray MF, et al: Hemolytic anemia and severe rhabdomyoly-  activity and glutathione production. Blood 102:725–730, 2003.
                  sis caused by compound heterozygous mutations of the gene for erythrocyte/muscle     388. Manu Pereira M, Gelbart T, Ristoff E, et al: Chronic non-spherocytic hemolytic ane-
                  isozyme of aldolase, ALDOA(Arg303X/Cys338Tyr). Blood 103:2401–2403, 2004.  mia associated with severe neurological disease due to γ-glutamylcysteine synthetase
                 355. Schneider  AS: Triosephosphate isomerase  deficiency: Historical perspectives and   deficiency in a patient of Moroccan origin. Haematologica 92:e102–E105, 2007.
                  molecular aspects. Baillieres Best Pract Res Clin Haematol 13:119–140, 2000.    389. Willis MN, Liu Y, Biterova EI, et al: Enzymatic defects underlying hereditary glutamate
                 356. Orosz F, Olah J, Alvarez M, et al: Distinct behavior of mutant triosephosphate   cysteine ligase deficiency are mitigated by association of the catalytic and regulatory
                  isomerase in hemolysate and in isolated form: Molecular basis of enzyme deficiency.   subunits. Biochemistry 50:6508–6517, 2011.
                  Blood 98:3106–3112, 2001.                             390. Shi ZZ, Osei-Frimpong J, Kala G, et al: Glutathione synthesis is essential for mouse
                 357. Orosz F, Oláh J, Ovádi J: Triosephosphate isomerase deficiency: New insights into an   development but not for cell growth in culture. Proc Natl Acad Sci U S A 97:5101–5106,
                  enigmatic disease. Biochim Biophys Acta 1792:1168–1174, 2009.  2000.
                 358. Orosz F, Olah J, Ovadi J: Triosephosphate isomerase deficiency: Facts and doubts.     391. Dalton TP, Dieter MZ, Yang Y, et al: Knockout of the mouse glutamate cysteine ligase
                  IUBMB Life 58:703–715, 2006.                           catalytic subunit (Gclc) gene: Embryonic lethal when homozygous, and proposed
                 359. Serdaroglu G, Aydinok Y, Yilmaz S, et al: Triosephosphate isomerase deficiency: A   model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res
                  patient with Val231Met mutation [in process citation].  Pediatr Neurol 44:139–142,   Commun 279:324–329, 2000.
                  2011.                                                 392. Yang Y, Dieter MZ, Chen Y, et al: Initial characterization of the glutamate-cysteine
                 360. Fermo E, Bianchi P, Vercellati C, et al: Triose phosphate isomerase deficiency associated   ligase modifier subunit Gclm(–/–) knockout mouse. Novel model system for a severely
                  with two novel mutations in TPI gene. Eur J Haematol 85:170–173, 2010.  compromised oxidative stress response. J Biol Chem 277:49446–49452, 2002.
                 361. Aissa K, Kamoun F, Sfaihi L, et al: Hemolytic anemia and progressive neurologic     393. Foller M, Harris IS, Elia A, et al: Functional significance of glutamate-cysteine ligase
                  impairment: Think about triosephosphate isomerase deficiency. Fetal Pediatr Pathol   modifier for erythrocyte survival in vitro and in vivo. Cell Death Differ 20:1350–1358,
                  33:234–238, 2014.                                      2013.







          Kaushansky_chapter 47_p0689-0724.indd   718                                                                   9/17/15   6:45 PM
   738   739   740   741   742   743   744   745   746   747   748