Page 743 - Williams Hematology ( PDFDrive )
P. 743
718 Part VI: The Erythrocyte Chapter 47: Erythrocyte Enzyme Disorders 719
333. Kugler W, Breme K, Laspe P, et al: Molecular basis of neurological dysfunction coupled 362. Manco L, Ribeiro ML: Novel human pathological mutations. Gene symbol: TPI1. Dis-
with haemolytic anaemia in human glucose-6-phosphate isomerase (GPI) deficiency. ease: Triosephosphate isomerase deficiency. Hum Genet 121: 650, 2007.
Hum Genet 103:450–454, 1998. 363. Sarper N, Zengin E, Jakobs C, et al: Mild hemolytic anemia, progressive neuromotor
334. Haller JF, Smith C, Liu D, et al: Isolation of novel animal cell lines defective in glycer- retardation and fatal outcome: A disorder of glycolysis, triose- phosphate isomerase
olipid biosynthesis reveals mutations in glucose-6-phosphate isomerase. J Biol Chem deficiency. Turk J Pediatr 55:198–202, 2013.
285:866–877, 2010. 364. Schneider A, Westwood B, Yim C, et al: The 1591C mutation in triosephosphate
335. Haller JF, Krawczyk SA, Gostilovitch L, et al: Glucose-6-phosphate isomerase defi- isomerase (TPI) deficiency. Tightly linked polymorphisms and a common haplotype in
ciency results in mTOR activation, failed translocation of lipin 1alpha to the nucleus all known families. Blood Cells Mol Dis 22:115–125, 1996.
and hypersensitivity to glucose: Implications for the inherited glycolytic disease. Bio- 365. Zingg BC, Pretsch W, Mohrenweiser HW: Molecular analysis of four ENU induced
chim Biophys Acta 1812:1393–1402, 2011. triosephosphate isomerase null mutants in Mus musculus. Mut Res 328:163–173, 1995.
336. Merkle S, Pretsch W: Glucose-6-phosphate isomerase deficiency associated with non- 366. Pretsch W: Triosephosphate isomerase activity-deficient mice show haemolytic
spherocytic hemolytic anemia in the mouse: An animal model for the human disease. anaemia in homozygous condition. Genet Res (Camb) 91:1–4, 2009.
Blood 81:206–213, 1993. 367. Celotto AM, Frank AC, Seigle JL, et al: Drosophila model of human inherited triose-
337. West JD: A genetically defined animal model of anembryonic pregnancy. Hum Reprod phosphate isomerase deficiency glycolytic enzymopathy. Genetics 174:1237–1246, 2006.
8:1316–1323, 1993. 368. Roland BP, Stuchul KA, Larsen SB, et al: Evidence of a triosephosphate isomerase non-
338. Nakajima H, Raben N, Hamaguchi T, et al: Phosphofructokinase deficiency; past, pres- catalytic function crucial to behavior and longevity. J Cell Sci 126:3151–3158, 2013.
ent and future. Curr Mol Med 2:197–212, 2002. 369. Beutler E: PGK deficiency. Br J Haematol 136:3–11, 2007.
339. Raben N, Sherman J, Miller F, et al: A 5′ splice junction mutation leading to exon dele- 370. Tamai M, Kawano T, Saito R, et al: Phosphoglycerate kinase deficiency due to a novel
tion in an Ashkenazic Jewish family with phosphofructokinase deficiency (Tarui dis- mutation (c. 1180A>G) manifesting as chronic hemolytic anemia in a Japanese boy. Int
ease). J Biol Chem 268:4963–4967, 1993. J Hematol 2014.
340. Tsujino S, Servidei S, Tonin P, et al: Identification of three novel mutations in non- 371. Valentini G, Maggi M, Pey AL: Protein stability, folding and misfolding in human
Ashkenazi Italian patients with muscle phosphofructokinase deficiency. Am J Hum PGK1 deficiency. Biomolecules 3:1030–1052, 2013.
Genet 54:812–819, 1994. 372. Spiegel R, Gomez EA, Akman HO, et al: Myopathic form of phosphoglycerate kinase
341. Fujii H, Miwa S: Other erythrocyte enzyme deficiencies associated with non-haemato- (PGK) deficiency: A new case and pathogenic considerations. Neuromuscul Disord
logical symptoms: Phosphoglycerate kinase and phosphofructokinase deficiency. Bail- 19:207–211, 2009.
lieres Best Pract Res Clin Haematol 13:141–148, 2000. 373. Morimoto A, Ueda I, Hirashima Y, et al: A novel missense mutation (1060G –> C) in
342. Raben N, Exelbert R, Spiegel R, et al: Functional expression of human mutant phos- the phosphoglycerate kinase gene in a Japanese boy with chronic haemolytic anaemia,
phofructokinase in yeast: Genetic defects in French Canadian and Swiss patients with developmental delay and rhabdomyolysis. Br J Haematol 122:1009–1013, 2003.
phosphofructokinase deficiency. Am J Hum Genet 56:131–141, 1995. 374. Fermo E, Bianchi P, Chiarelli LR, et al: A new variant of phosphoglycerate kinase defi-
343. Musumeci O, Bruno C, Mongini T, et al: Clinical features and new molecular find- ciency (p.I371K) with multiple tissue involvement: Molecular and functional character-
ings in muscle phosphofructokinase deficiency (GSD type VII). Neuromuscul Disord ization. Mol Genet Metab 106:455–461, 2012.
22:325–330, 2012. 375. Rhodes M, Ashford L, Manes B, et al: Bone marrow transplantation in phosphoglycer-
344. Vives Corrons J-L, Koralkova P, Grau JM, et al: First identification of phosphofructok- ate kinase (PGK) deficiency. Br J Haematol 152:500–502, 2011.
inase deficiency in Spain: Identification of a novel homozygous missense mutation in 376. Chiarelli LR, Morera SM, Bianchi P, et al: Molecular insights on pathogenic effects of
the PFKM gene. Front Physiol 4: 393, 2013. mutations causing phosphoglycerate kinase deficiency. PLoS One 7:e32065, 2012.
345. Brüser A, Kirchberger J, Schöneberg T: Altered allosteric regulation of muscle 6-phos- 377. Lemarchandel V, Joulin V, Valentin C, et al: Compound heterozygosity in a complete
phofructokinase causes Tarui disease. Biochem Biophys Res Commun 427(1):133–137, erythrocyte bisphosphoglycerate mutase deficiency. Blood 80:2643–2649, 1992.
2012. 378. Hoyer JD, Allen SL, Beutler E, et al: Erythrocytosis due to bisphosphoglycerate mutase
346. Nichols RC, Rudolphi O, Ek B, et al: Glycogenosis type VII (Tarui disease) in a Swedish deficiency with concurrent glucose-6-phosphate dehydrogenase (G6PD) deficiency.
family: Two novel mutations in muscle phosphofructokinase gene (PFK-M) resulting Am J Hematol 75:205–208, 2004.
in intron retentions. Am J Hum Genet 59:59–65, 1996. 379. Petousi N, Copley RR, Lappin TR, et al: Erythrocytosis associated with a novel missense
347. Hamaguchi T, Nakajima H, Noguchi T, et al: Novel missense mutation (W686C) of the mutation in the BPGM gene. Haematologica 99:e201–e204, 2014.
phosphofructokinase-M gene in a Japanese patient with a mild form of glycogenosis 380. Rosa R, Prehu M-O, Beuzard Y, et al: The first case of a complete deficiency of diphos-
VII. Hum Mutat 8:273–275, 1996. phoglycerate mutase in human erythrocytes. J Clin Invest 62:907–915, 1978.
348. Inal Gultekin G, Raj K, Lehman S, et al: Missense mutation in PFKM associated with 381. Konrad PN, Richards F II, Valentine WN, et al: γ-Glutamyl-cysteine synthetase defi-
muscle-type phosphofructokinase deficiency in the Wachtelhund dog. Mol Cell Probes ciency. A cause of hereditary hemolytic anemia. N Engl J Med 286:557–561, 1972.
26:243–247, 2012. 382. Hirono A, Iyori H, Sekine I, et al: Three cases of hereditary nonspherocytic hemolytic
349. Garcia M, Pujol A, Ruzo A, et al: Phosphofructo-1-kinase deficiency leads to a severe anemia associated with red blood cell glutathione deficiency. Blood 87:2071–2074,
cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS 1996.
Genet 5:e1000615, 2009. 383. Beutler E, Moroose R, Kramer L, et al: Gamma-glutamylcysteine synthetase deficiency
350. Gerber K, Harvey JW, D’Agorne S, et al: Hemolysis, myopathy, and cardiac disease and hemolytic anemia. Blood 75:271–273, 1990.
associated with hereditary phosphofructokinase deficiency in two Whippets. Vet Clin 384. Richards F 2nd, Cooper MR, Pearce LA, et al: Familial spinocerebellar degeneration,
Pathol 38:46–51, 2009. hemolytic anemia, and glutathione deficiency. Arch Intern Med 134:534–537, 1974.
351. Miwa S, Fujii H, Tani K, et al: Two cases of red cell aldolase deficiency associated with 385. Beutler E, Gelbart T, Kondo T, et al: The molecular basis of a case of γ-glutamylcysteine
hereditary hemolytic anemia in a Japanese family. Am J Hematol 11:425–437, 1981. synthetase deficiency. Blood 94:2890–2894, 1999.
352. Kreuder J, Borkhardt A, Repp R, et al: Brief report: Inherited metabolic myopathy and 386. Ristoff E, Augustson C, Geissler J, et al: A missense mutation in the heavy subunit of
hemolysis due to a mutation in aldolase A. N Engl J Med 334:1100–1104, 1996. γ-glutamylcysteine synthetase gene causes hemolytic anemia. Blood 95:1896–1897,
353. Esposito G, Vitagliano L, Costanzo P, et al: Human aldolase A natural mutants: Rela- 2000.
tionship between flexibility of the C-terminal region and enzyme function. Biochem J 387. Hamilton D, Wu JH, Alaoui-Jamali M, et al: A novel missense mutation in the γ-
380:51–56, 2004. glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic
354. Yao DC, Tolan DR, Murray MF, et al: Hemolytic anemia and severe rhabdomyoly- activity and glutathione production. Blood 102:725–730, 2003.
sis caused by compound heterozygous mutations of the gene for erythrocyte/muscle 388. Manu Pereira M, Gelbart T, Ristoff E, et al: Chronic non-spherocytic hemolytic ane-
isozyme of aldolase, ALDOA(Arg303X/Cys338Tyr). Blood 103:2401–2403, 2004. mia associated with severe neurological disease due to γ-glutamylcysteine synthetase
355. Schneider AS: Triosephosphate isomerase deficiency: Historical perspectives and deficiency in a patient of Moroccan origin. Haematologica 92:e102–E105, 2007.
molecular aspects. Baillieres Best Pract Res Clin Haematol 13:119–140, 2000. 389. Willis MN, Liu Y, Biterova EI, et al: Enzymatic defects underlying hereditary glutamate
356. Orosz F, Olah J, Alvarez M, et al: Distinct behavior of mutant triosephosphate cysteine ligase deficiency are mitigated by association of the catalytic and regulatory
isomerase in hemolysate and in isolated form: Molecular basis of enzyme deficiency. subunits. Biochemistry 50:6508–6517, 2011.
Blood 98:3106–3112, 2001. 390. Shi ZZ, Osei-Frimpong J, Kala G, et al: Glutathione synthesis is essential for mouse
357. Orosz F, Oláh J, Ovádi J: Triosephosphate isomerase deficiency: New insights into an development but not for cell growth in culture. Proc Natl Acad Sci U S A 97:5101–5106,
enigmatic disease. Biochim Biophys Acta 1792:1168–1174, 2009. 2000.
358. Orosz F, Olah J, Ovadi J: Triosephosphate isomerase deficiency: Facts and doubts. 391. Dalton TP, Dieter MZ, Yang Y, et al: Knockout of the mouse glutamate cysteine ligase
IUBMB Life 58:703–715, 2006. catalytic subunit (Gclc) gene: Embryonic lethal when homozygous, and proposed
359. Serdaroglu G, Aydinok Y, Yilmaz S, et al: Triosephosphate isomerase deficiency: A model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res
patient with Val231Met mutation [in process citation]. Pediatr Neurol 44:139–142, Commun 279:324–329, 2000.
2011. 392. Yang Y, Dieter MZ, Chen Y, et al: Initial characterization of the glutamate-cysteine
360. Fermo E, Bianchi P, Vercellati C, et al: Triose phosphate isomerase deficiency associated ligase modifier subunit Gclm(–/–) knockout mouse. Novel model system for a severely
with two novel mutations in TPI gene. Eur J Haematol 85:170–173, 2010. compromised oxidative stress response. J Biol Chem 277:49446–49452, 2002.
361. Aissa K, Kamoun F, Sfaihi L, et al: Hemolytic anemia and progressive neurologic 393. Foller M, Harris IS, Elia A, et al: Functional significance of glutamate-cysteine ligase
impairment: Think about triosephosphate isomerase deficiency. Fetal Pediatr Pathol modifier for erythrocyte survival in vitro and in vivo. Cell Death Differ 20:1350–1358,
33:234–238, 2014. 2013.
Kaushansky_chapter 47_p0689-0724.indd 718 9/17/15 6:45 PM

