Page 741 - Williams Hematology ( PDFDrive )
P. 741

716            Part VI:  The Erythrocyte                                                                                                                                     Chapter 47:  Erythrocyte Enzyme Disorders             717




                 202. Beutler E: Red cell enzyme defects as nondiseases and as diseases. Blood 54:1–7, 1979.    237. Kwon TH, Han YH, Hong SG, et al: Reactive oxygen species mediated DNA damage is
                 203. Jacob HS, Jandl JH: Effects of sulfhydryl inhibition on red blood cells. I. Mechanism of   essential for abnormal erythropoiesis in peroxiredoxin II(–/–) mice. Biochem Biophys
                  hemolysis. J Clin Invest 41:779–792, 1962.             Res Commun 424:189–195, 2012.
                 204. Valentine WN, Toohey JI, Paglia DE, et al: Modification of erythrocyte enzyme activi-    238. Johnson RM, Ho Y-S, Yu D-Y, et al: The effects of disruption of genes for peroxire-
                  ties by persulfides and methanethiol: Possible regulatory role. Proc Natl Acad Sci U S A   doxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism.
                  84:1394–1398, 1987.                                    Free Radic Biol Med 48:519–525, 2010.
                 205. Ogasawara Y, Funakoshi M, Ishii K: Pyruvate kinase is protected by glutathione-     239. Nagababu E, Mohanty JG, Friedman JS, et al: Role of peroxiredoxin-2 in protecting
                  dependent redox balance in human red blood cells exposed to reactive oxygen species.   RBCs from hydrogen peroxide-induced oxidative stress. Free Radic Res 47:164–171,
                  Biol Pharm Bull 31:1875–1881, 2008.                    2013.
                 206. Magnani M, Stocchi V, Ninfali P, et al: Action of oxidized and reduced glutathione on     240. van Zwieten R, Verhoeven AJ, Roos D: Inborn defects in the antioxidant systems of
                  rabbit red blood cell hexokinase. Biochim Biophys Acta 615:113–120, 1980.  human red blood cells. Free Radic Biol Med. 67:377–386, 2014.
                 207. Huisman TH, Dozy AM: Studies on the heterogeneity of hemoglobin. V. Binding of     241. Abrusci P, Chiarelli LR, Galizzi A, et al: Erythrocyte adenylate kinase deficiency: Char-
                  hemoglobin with oxidized glutathione. J Lab Clin Med 60:302–319, 1962.  acterization of recombinant mutant forms and relationship with nonspherocytic hemo-
                 208. Kelner MJ, Montoya MA: Structural organization of the human glutathione reductase   lytic anemia. Exp Hematol 35:1182–1189, 2007.
                  gene: Determination of correct cDNA sequence and identification of a mitochondrial     242. Balasubramaniam S, Duley JA, Christodoulou J: Inborn errors of purine metabolism:
                  leader sequence. Biochem Biophys Res Commun 269:366–368, 2000.  Clinical update and therapies. J Inherit Metab Dis 37:669–686, 2014.
                 209. Karplus PA, Schulz GE: Refined structure of glutathione reductase at 1.54 A resolution.     243. Valentine WN, Paglia DE: Erythrocyte disorders of purine and pyrimidine metabolism.
                  J Mol Biol 195:701–729, 1987.                          Hemoglobin 4:669–681, 1980.
                 210. Wong KK, Blanchard JS: Human erythrocyte glutathione reductase: PH dependence of     244. Valentine WN, Fink K, Paglia DE, et al: Hereditary hemolytic anemia with human ery-
                  kinetic parameters. Biochemistry 28:3586–3590, 1989.   throcyte pyrimidine 5’-nucleotidase deficiency. J Clin Invest 54:866–879, 1974.
                 211. Beutler E, Yeh MK: Y. Erythrocyte glutathione reductase. Blood 21:573–585, 1963.    245. Paglia DE, Valentine WN: Characteristics of a pyrimidine-specific 5′-nucleotidase in
                 212. Beutler E: Glutathione reductase: Stimulation in normal subjects by riboflavin supple-  human erythrocytes. J Biol Chem 250:7973–7979, 1975.
                  mentation. Science 165:613–615, 1969.                 246. Beutler E, Hartman G: Age-related red cell enzymes in children with transient ery-
                 213. Hoey L, McNulty H, Strain JJ: Studies of biomarker responses to intervention with ribo-  throblastopenia of childhood and with hemolytic anemia. Pediatr Res 19:44–47, 1985.
                  flavin: A systematic review. Am J Clin Nutr 89:1960S–1980S, 2009.    247. Amici A, Emanuelli M, Magni G, et al: Pyrimidine nucleotidases from human erythro-
                 214. Mojzikova R, Dolezel P, Pavlicek J, et al: Partial glutathione reductase deficiency as a   cyte possess phosphotransferase activities specific for pyrimidine nucleotides.  FEBS
                  cause of diverse clinical manifestations in a family with unstable hemoglobin (Hemo-  Lett 419:263–267, 1997.
                  globin Hana, beta63(E7) His-Asn). Blood Cells Mol Dis 45:219–222, 2010.    248. Bitto E, Bingman CA, Wesenberg GE, et al: Structure of pyrimidine 5′-nucleotidase
                 215. Mieyal JJ, Starke DW, Gravina SA, et al: Thioltransferase in human red blood cells:   type 1. Insight into mechanism of action and inhibition during lead poisoning. J Biol
                  Kinetics and equilibrium. Biochemistry 30:8883–8891, 1991.  Chem 281:20521–20529, 2006.
                 216. Mieyal JJ, Starke DW, Gravina SA, et al: Thioltransferase in human red blood cells:     249. Marinaki AM, Escuredo E, Duley JA, et al: Genetic basis of hemolytic anemia caused by
                  Purification and properties. Biochemistry 30:6088–6097, 1991.  pyrimidine 5′ nucleotidase deficiency. Blood 97:3327–3332, 2001.
                 217. Srivastava SK, Beutler E: The transport of oxidized glutathione from human erythro-    250. Kanno H, Takizawa T, Miwa S, et al: Molecular basis of Japanese variants of pyrimidine
                  cytes. J Biol Chem 244:9–16, 1969.                     5′-nucleotidase deficiency. Br J Haematol 126:265–271, 2004.
                 218. Prchal J, Srivastava SK, Beutler E: Active transport of GSSG from reconstituted erythro-    251. Hirono A, Fujii H, Natori H, et al: Chromatographic analysis of human erythrocyte
                  cyte ghosts. Blood 46:111–117, 1975.                   pyrimidine 5′-nucleotidase from five patients with pyrimidine 5′-nucleotidase defi-
                 219. Lunn G, Dale GL, Beutler E: Transport accounts for glutathione turnover in human   ciency. Br J Haematol 65:35–41, 1987.
                  erythrocytes. Blood 54:238–244, 1979.                 252. Sestini S, Ricci C, Micheli V, et al: Nicotinamide mononucleotide adenylyltransferase
                 220. Kondo T, Kawakami Y, Taniguchi N, et al: Glutathione disulfide-stimulated Mg2+-AT-  activity in human erythrocytes. Arch Biochem Biophys 302:206–211, 1993.
                  Pase of human erythrocyte membranes.  Proc Natl Acad Sci U S A 84:7373–7377,       253. Di Stefano M, Galassi L, Magni G: Unique expression pattern of human nicotinamide
                  1987.                                                  mononucleotide adenylyltransferase isozymes in red blood cells. Blood Cells Mol Dis
                 221. Board PG: Transport of glutathione S-conjugate from human erythrocytes. FEBS Lett   45:33–39, 2010.
                  124:163–165, 1981.                                    254. Hikosaka K, Ikutani M, Shito M, et al: Deficiency of nicotinamide mononucleotide
                 222. Kondo T, Murao M, Taniguchi N: Glutathione S-conjugate transport using inside-out   adenylyltransferase 3 (Nmnat3) causes hemolytic anemia by altering the glycolytic flow
                  vesicles from human erythrocytes. Eur J Biochem 125:551–554, 1982.  in mature erythrocytes. J Biol Chem 289:14796–14811, 2014.
                 223. Pulaski L, Jedlitschky G, Leier I, et al: Identification of the multidrug-resistance pro-    255. Arnold H, Blume KG, Lohr GW, et al: “Acquired” red cell enzyme defects in hematolog-
                  tein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur J Biochem   ical diseases. Clin Chim Acta 57:187–189, 1974.
                  241:644–648, 1996.                                    256. Boivin P, Galand C, Hakim J, et al: Acquired erythroenzymopathies in blood disorders:
                 224. Marcus CJ, Habig WH, Jakoby WB: Glutathione transferase from human erythrocytes.   Study of 200 cases. Br J Haematol 31:531–543, 1975.
                  Nonidentity with the enzymes from liver. Arch Biochem Biophys 188:287–293, 1978.    257. Kahn A, Marie J, Bernard J-F, et al: Mechanisms of the acquired erythrocyte enzyme
                 225. Awasthi YC, Singh SV: Purification and characterization of a new form of glutathione   deficiencies in blood diseases. Clin Chim Acta 71:379–387, 1976.
                  S-transferase from human erythrocytes. Biochem Biophys Res Commun 125:1053–1060,     258. Kahn A: Abnormalities of erythrocyte enzymes in dyserythropoiesis and malignancies.
                  1984.                                                  Clin Haematol 10:123–138, 1981.
                 226. Schroder KR, Hallier E, Meyer DJ, et al: Purification and characterization of a new       259. Kornberg A, Goldfarb A: Preleukemia manifested by hemolytic anemia with pyru-
                  glutathione S-transferase, class theta, from human erythrocytes. Arch Toxicol. 70:559–  vate-kinase deficiency. Arch Intern Med 146:785–786, 1986.
                  566, 1996.                                            260. Shinohara K, Tanaka KR: Hereditary deficiency of erythrocyte acetylcholinesterase. Am
                 227. Harvey JW, Beutler E: Binding of heme by glutathione S-transferase: A possible role of   J Hematol 7:313–321, 1979.
                  the erythrocyte enzyme. Blood 60:1227–1230, 1982.     261. Rosa R, George C, Fardeau M, et al: A new case of phosphoglycerate kinase deficiency:
                 228. Beutler E, Dunning D, Dabe IB, et al: Erythrocyte glutathione S-transferase deficiency   PGK Creteil associated with rhabdomyolysis and lacking hemolytic anemia.  Blood
                  and hemolytic anemia. Blood 72:73–77, 1988.            60:84–91, 1982.
                 229. Winterbourn CC, Hawkins RE, Brian M, et al: The estimation of red cell superoxide     262. Marstein S, Jellum E, Halpern B, et al: Biochemical studies of erythrocytes in a patient
                  dismutase activity. J Lab Clin Med 85:337–341, 1975.   with pyroglutamic acidemia (5-oxoprolinemia). N Engl J Med 295:406–412, 1976.
                 230. Rosen DR, Siddique T, Patterson D, et al: Mutations in Cu/Zn superoxide dismutase     263. Beutler E, Carson D, Dannawi H, et al: Metabolic compensation for profound erythro-
                  gene are associated with familial amyotrophic lateral sclerosis.  Nature 362:59–62,     cyte adenylate kinase deficiency. J Clin Invest 72:648–655, 1983.
                  1993.                                                 264. Beutler E: Hemolytic Anemia in Disorders of Red Cell Metabolism. Plenum Press, New
                 231. Grzelak A, Kruszewski M, Macierzyńska E, et al: The effects of superoxide dismutase   York, 1978.
                  knockout on the oxidative stress parameters and survival of mouse erythrocytes. Cell     265. Glucose-6-phosphate dehydrogenase  deficiency. WHO  Working Group.  Bull World
                  Mol Biol Lett 14:23–34, 2009.                          Health Organ 67:601–611, 1989.
                 232. Iuchi Y, Okada F, Takamiya R, et al: Rescue of anaemia and autoimmune responses in     266. Betke K, Beutler E, Brewer GJ, et al: Standardization of procedures for the study of
                  SOD1-deficient mice by transgenic expression of human SOD1 in erythrocytes. Bio-  glucose-6-phosphate dehydrogenase. Report of a WHO scientific group. World Health
                  chem J 422:313–320, 2009.                              Organ Tech Rep Ser 366:1–53, 1967.
                 233. Goth L, Nagy T: Inherited catalase deficiency: Is it benign or a factor in various age     267. Piomelli S, Corash LM, Davenport DD, et al: In vivo lability of glucose-6-phosphate
                  related disorders? Mutat Res 753:147–154, 2013.        dehydrogenase in GdA- and Gd Mediterranean deficiency. J Clin Invest 47:940–948,
                 234. Takahara S: Progressive oral gangrene probably due to lack of catalase in the blood   1968.
                  (acatalasaemia); report of nine cases. Lancet 2:1101–1104, 1952.    268. Kahn A, Cottreau D, Boivin P: Molecular mechanism of glucose-6-phosphate dehydro-
                 235. Low FM, Hampton MB, Peskin AV, et al: Peroxiredoxin 2 functions as a noncatalytic   genase deficiency. Humangenetik 25:101–109, 1974.
                  scavenger of low-level hydrogen peroxide in the erythrocyte. Blood 109:2611–2617,     269. Beutler E: Selectivity of proteases as a basis for tissue distribution of enzymes in hered-
                  2007.                                                  itary deficiencies. Proc Natl Acad Sci U S A 80:3767–3768, 1983.
                 236. Lee T-H, Kim S-U, Yu S-L, et al: Peroxiredoxin II is essential for sustaining life span of     270. Kirkman HN, Schettini F, Pickard BM: Mediterranean variant of glucose-6-phosphate
                  erythrocytes in mice. Blood 101:5033–5038, 2003.       dehydrogenase. J Lab Clin Med 63:726–735, 1964.







          Kaushansky_chapter 47_p0689-0724.indd   716                                                                   9/17/15   6:45 PM
   736   737   738   739   740   741   742   743   744   745   746