Page 739 - Williams Hematology ( PDFDrive )
P. 739

714            Part VI:  The Erythrocyte                                                                                                                                     Chapter 47:  Erythrocyte Enzyme Disorders             715




                 74.  Elson A, Levanon D, Brandeis M, et al: The structure of the human liver-type phos-    107. Patterson A, Price NC, Nairn J: Unliganded structure of human bisphosphoglycerate
                  phofructokinase gene. Genomics 7:47–56, 1990.          mutase reveals side-chain movements induced by ligand binding. Acta Crystallogr Sect
                 75.  Vora S, Davidson M, Seaman C, et al: Heterogeneity of the molecular lesions in inher-  F Struct Biol Cryst Commun 66(Pt 11):1415–1420, 2010.
                  ited phosphofructokinase deficiency. J Clin Invest 72:1995–2006, 1983.    108. Hass LF, Kappel WK, Muller KB, et al: Evidence for structural homology between
                 76.  Yeltman DR, Harris BG: Fructose-bisphosphate aldolase from human erythrocytes.   human red cell phosphoglycerate mutase and 2,3-bisphosphoglycerate synthase. J Biol
                  Methods Enzymol 90 Pt E:251–254, 1982.                 Chem 253:77–81, 1978.
                 77.  Beutler E, Scott S, Bishop A, et al: Red cell aldolase deficiency and hemolytic anemia: A     109. Climent F, Roset F, Repiso A, et al: Red cell glycolytic enzyme disorders caused by muta-
                  new syndrome. Trans Assoc Am Physicians 86:154–166, 1973.  tions: An update. Cardiovasc Hematol Disord Drug Targets 9:95–106, 2009.
                 78.  Dalby A, Dauter Z, Littlechild JA: Crystal structure of human muscle aldolase com-    110. Repiso A, Perez de la Ossa P, Aviles X, et al: Red blood cell phosphosphoglycer-
                  plexed with fructose 1,6-bisphosphate: Mechanistic implications.  Protein Sci 8:   ate mutase. Description of the first human BB isoenzyme mutation.  Haematologica
                  291–297, 1999.                                         88:eCR07, 2003.
                 79.  Yeltman DR, Harris BG: Localization and membrane association of aldolase in human     111. de Atauri P, Repiso A, Oliva B, et al: Characterization of the first described mutation of
                  erythrocytes. Arch Biochem Biophys 199:186–196, 1980.  human red blood cell phosphoglycerate mutase. Biochim Biophys Acta 1740:403–410,
                 80.  Perrotta S, Borriello A, Scaloni A, et al: The N-terminal 11 amino acids of human ery-  2005.
                  throcyte band 3 are critical for aldolase binding and protein phosphorylation: Implica-    112. Repiso A, Ramirez Bajo MJ, Corrons JL, et al: Phosphoglycerate mutase BB isoenzyme
                  tions for band 3 function. Blood 106:4359–4366, 2005.  deficiency in a patient with non-spherocytic anemia: Familial and metabolic studies.
                 81.  Izzo P, Costanzo P, Lupo A, et al: Human aldolase A gene. Structural organization and   Haematologica 90:257–259, 2005.
                  tissue-specific expression by multiple promoters and alternate mRNA processing. Eur J     113. Hoorn RK: J., Filkweert JP, Staal GE: J. Purification and properties of enolase of human
                  Biochem 174:569–578, 1988.                             erythrocytes. Int J Biochem 5:845–852, 1974.
                 82.  Wierenga  RK,  Kapetaniou  EG,  Venkatesan  R:  Triosephosphate  isomerase:  A  highly     114. Kang HJ, Jung SK, Kim SJ, et al: Structure of human alpha-enolase (hENO1), a multi-
                  evolved biocatalyst. Cell Mol Life Sci 67:3961–3982, 2010.  functional glycolytic enzyme. Acta Crystallogr D Biol Crystallogr 64:651–657, 2008.
                 83.  Lu HS, Yuan PM, Gracy RW: Primary structure of human triosephosphate isomerase.      115. Stefanini M: Chronic hemolytic anemia associated with erythrocyte enolase deficiency
                  J Biol Chem 259:11958–11968, 1984.                     exacerbated by ingestion of nitrofurantoin. Am J Clin Pathol 58:408–414, 1972.
                 84.  Mande SC, Mainfroid V, Kalk KH, et al: Crystal structure of recombinant human     116. Boulard-Heitzmann P, Boulard M, Tallineau C, et al: Decreased red cell enolase activity
                  triosephosphate isomerase at  2.8 A resolution. Triosephosphate isomerase-related   in a 40-year-old woman with compensated haemolysis. Scand J Haematol 33:401–404,
                  human genetic disorders and comparison with the trypanosomal enzyme. Protein Sci   1984.
                  3:810–821, 1994.                                      117. Noguchi T, Inoue H, Tanaka T: The M - and M -type isozymes of rat pyruvate kinase
                                                                                               1
                                                                                                    2
                 85.  Rodríguez-Almazán C, Arreola R, Rodríguez-Larrea D, et al: Structural basis of   are produced from the same gene by alternative RNA splicing.  J Biol Chem 261:
                  human triosephosphate isomerase deficiency: Mutation E104D is related to alterations   13807–13812, 1986.
                  of a conserved water network at the dimer interface. J Biol Chem 283:23254–23263,       118. Kanno H, Fujii H, Miwa S: Structural analysis of human pyruvate kinase L-gene and
                  2008.                                                  identification of the promoter activity in erythroid cells. Biochem Biophys Res Commun
                 86.  Peters J, Hopkinson DA, Harris H: Genetic and non-genetic variation of triose phos-  188:516–523, 1992.
                  phate isomerase isozymes in human tissues. Ann Hum Genet 36:297–312, 1973.    119. Noguchi T, Yamada K, Inoue H, et al: The L- and R-type isozymes of rat pyruvate
                 87.  Brown JR, Daar IO, Krug JR, et al: Characterization of the functional gene and several   kinase are produced from a single gene by use of different promoters. J Biol Chem 262:
                  processed pseudogenes in the human triosephosphate isomerase gene family. Mol Cell   14366–14371, 1987.
                  Biol 5:1694–1706, 1985.                               120. van Oirschot BA, Francois JJ, van Solinge WW, et al: Novel type of red blood cell pyru-
                 88.  Rogalski AA, Steck TL, Waseem A: Association of glyceraldehyde-3-phosphate dehy-  vate kinase hyperactivity predicts a remote regulatory locus involved in PKLR gene
                  drogenase with the plasma membrane of the intact human red blood cell. J Biol Chem   expression. Am J Hematol 89:380–384, 2014.
                  264:6438–6446, 1989.                                  121. Kanno H, Fujii H, Hirono A, et al: CDNA cloning of human R-type pyruvate kinase
                 89.  Tsai IH, Murthy SN, Steck TL: Effect of red cell membrane binding on the catalytic   and identification of a single amino acid substitution (Thr →Met) affecting enzymatic
                                                                                                         384
                  activity of glyceraldehyde-3-phosphate dehydrogenase.  J Biol Chem 257:1438–1442,   stability in a pyruvate kinase variant (PK Tokyo) associated with hereditary hemolytic
                  1982.                                                  anemia. Proc Natl Acad Sci U S A 88:8218–8221, 1991.
                 90.  Low PS, Rathinavelu P, Harrison ML: Regulation of glycolysis via reversible enzyme     122. Kahn A, Marie J, Garreau H, et al: The genetic system of the L-type pyruvate kinase
                  binding to the membrane protein, band 3. J Biol Chem 268:14627–14631, 1993.  forms in man. Subunit structure, interrelation and kinetic characteristics of the pyru-
                 91.  Mountassif D, Baibai T, Fourrat L, et al: Immunoaffinity purification and characteri-  vate kinase enzymes from erythrocytes and liver.  Biochim Biophys Acta 523:59–74,
                  zation of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. Acta   1978.
                  Biochim Biophys Sin (Shanghai) 41:399–406, 2009.      123. Kahn A, Marie J: Pyruvate kinases from human erythrocytes and liver. Methods Enzy-
                 92.  Raje CI, Kumar S, Harle A, et al: The macrophage cell surface glyceraldehyde-3-phosphate   mol 90:131–140, 1982.
                  dehydrogenase is a novel transferrin receptor. J Biol Chem 282:3252–3261, 2007.    124. Valentini G, Chiarelli LR, Fortin R, et al: Structure and function of human erythro-
                 93.  Ismail SA, Park HW: Structural analysis of human liver glyceraldehyde-3-phosphate   cyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. J Biol Chem
                  dehydrogenase. Acta Crystallogr D Biol Crystallogr 61:1508–1513, 2005.  277:23807–23814, 2002.
                 94.  McCann SR, Finkel B, Cadman S, et al: Study of a kindred with hereditary spherocyto-    125. Enriqueta Muñoz M, Ponce E: Pyruvate kinase: Current status of regulatory and func-
                  sis and glyceraldehyde-3-phosphate dehydrogenase deficiency. Blood 47:171–181, 1976.  tional properties. Comp Biochem Physiol B Biochem Mol Biol 135:197–218, 2003.
                 95.  Huang IY, Welch CD, Yoshida A: Complete amino acid sequence of human phospho-    126. Wang C, Chiarelli LR, Bianchi P, et al: Human erythrocyte pyruvate kinase: Characteri-
                  glycerate kinase. Cyanogen bromide peptides and complete amino acid sequence. J Biol   zation of the recombinant enzyme and a mutant form (R510Q) causing nonspherocytic
                  Chem 255:6412–6420, 1980.                              hemolytic anemia. Blood 98:3113–3120, 2001.
                 96.  McCarrey JR, Thomas K: Human testis-specific PGK gene lacks introns and possesses     127. Fenton AW, Tang Q: An activating interaction between the unphosphorylated n-
                  characteristics of a processed gene. Nature 326:501–505, 1987.  terminus of human liver pyruvate kinase and the main body of the protein is inter-
                 97.  Banks RD, Blake CC, Evans PR, et al: Sequence, structure and activity of phosphoglyc-  rupted by phosphorylation. Biochemistry 48:3816–3818, 2009.
                  erate kinase: A possible hinge-bending enzyme. Nature 279:773–777, 1979.    128. Jurica MS, Mesecar A, Heath PJ, et al: The allosteric regulation of pyruvate kinase by
                 98.  Szabo J, Varga A, Flachner B, et al: Communication between the nucleotide site and the   fructose-1,6-bisphosphate. Structure 6:195–210, 1998.
                  main molecular hinge of 3-phosphoglycerate kinase. Biochemistry 47:6735–6744, 2008.    129. Rigden DJ, Phillips SE, Michels PA, et al: The structure of pyruvate kinase from Leish-
                 99.  Palmai Z, Chaloin L, Lionne C, et al: Substrate binding modifies the hinge bending   mania mexicana reveals details of the allosteric transition and unusual effector specific-
                  characteristics of human 3-phosphoglycerate kinase: A molecular dynamics study. Pro-  ity. J Mol Biol 291:615–635, 1999.
                  teins 77:319–329, 2009.                               130. Valentini G, Chiarelli L, Fortin R, et al: The allosteric regulation of pyruvate kinase.
                 100. Ikura K, Sasaki R, Narita H, et al: Multifunctional enzyme, bisphosphoglyceromutase/   J Biol Chem 275:18145–18152, 2000.
                  2,3-bisphosphoglycerate phosphatase/phosphoglyceromutase from human erythro-    131. Wooll JO, Friesen RH, White MA, et al: Structural and functional linkages between
                  cytes. Eur J Biochem 66:515–522, 1976.                 subunit interfaces in mammalian pyruvate kinase. J Mol Biol 312:525–540, 2001.
                 101. Rose ZB: The enzymology of 2,3-bisphosphoglycerate. Adv Enzymol Relat Areas Mol     132. Fenton AW, Blair JB: Kinetic and allosteric consequences of mutations in the subunit
                  Biol 51:211–253, 1980.                                 and domain interfaces and the allosteric site of yeast pyruvate kinase. Arch Biochem
                 102. Vora S, Spear D: Demonstration and quantitation of phosphoglycolate in human red   Biophys 397:28–39, 2002.
                  cells. Clin Res 34:664A, 1986.                        133. Blume KG, Hoffbauer RW, Busch D, et al: Purification and properties of pyruvate kinase
                 103. Fujii S, Beutler E: Where does phosphoglycolate come from in red cells? Acta Haematol   in normal and in pyruvate kinase deficient human red blood cells. Biochim Biophys Acta
                  73:26–30, 1985.                                        227:364–372, 1971.
                 104. Sasaki H, Fujii S, Yoshizaki Y, et al: Phosphoglycolate synthesis by human erythrocyte     134. Kitamura M, Iijima N, Hashimoto F, et al: Hereditary deficiency of subunit H of lactate
                  pyruvate kinase. Acta Haematol 77:83–86, 1987.         dehydrogenase. Clin Chim Acta 34:419–423, 1971.
                 105. Beutler E, West C: An improved assay and some properties of phosphoglycolate phos-    135. Joukyuu  R, Mizuno  S,  Amakawa  T,  et  al:  Hereditary  complete  deficiency  of  lactate
                  phatase. Anal Biochem 106:163–168, 1980.               dehydrogenase H-subunit. Clin Chem 35:687–690, 1989.
                 106. Wang Y, Wei Z, Bian Q, et al: Crystal structure of human bisphosphoglycerate mutase.     136. Wakabayashi H, Tsuchiya M, Yoshino K, et al: Hereditary deficiency of lactate dehydro-
                  J Biol Chem 279:39132–39138, 2004.                     genase H-subunit. Intern Med 35:550–554, 1996.







          Kaushansky_chapter 47_p0689-0724.indd   714                                                                   9/17/15   6:45 PM
   734   735   736   737   738   739   740   741   742   743   744