Page 739 - Williams Hematology ( PDFDrive )
P. 739
714 Part VI: The Erythrocyte Chapter 47: Erythrocyte Enzyme Disorders 715
74. Elson A, Levanon D, Brandeis M, et al: The structure of the human liver-type phos- 107. Patterson A, Price NC, Nairn J: Unliganded structure of human bisphosphoglycerate
phofructokinase gene. Genomics 7:47–56, 1990. mutase reveals side-chain movements induced by ligand binding. Acta Crystallogr Sect
75. Vora S, Davidson M, Seaman C, et al: Heterogeneity of the molecular lesions in inher- F Struct Biol Cryst Commun 66(Pt 11):1415–1420, 2010.
ited phosphofructokinase deficiency. J Clin Invest 72:1995–2006, 1983. 108. Hass LF, Kappel WK, Muller KB, et al: Evidence for structural homology between
76. Yeltman DR, Harris BG: Fructose-bisphosphate aldolase from human erythrocytes. human red cell phosphoglycerate mutase and 2,3-bisphosphoglycerate synthase. J Biol
Methods Enzymol 90 Pt E:251–254, 1982. Chem 253:77–81, 1978.
77. Beutler E, Scott S, Bishop A, et al: Red cell aldolase deficiency and hemolytic anemia: A 109. Climent F, Roset F, Repiso A, et al: Red cell glycolytic enzyme disorders caused by muta-
new syndrome. Trans Assoc Am Physicians 86:154–166, 1973. tions: An update. Cardiovasc Hematol Disord Drug Targets 9:95–106, 2009.
78. Dalby A, Dauter Z, Littlechild JA: Crystal structure of human muscle aldolase com- 110. Repiso A, Perez de la Ossa P, Aviles X, et al: Red blood cell phosphosphoglycer-
plexed with fructose 1,6-bisphosphate: Mechanistic implications. Protein Sci 8: ate mutase. Description of the first human BB isoenzyme mutation. Haematologica
291–297, 1999. 88:eCR07, 2003.
79. Yeltman DR, Harris BG: Localization and membrane association of aldolase in human 111. de Atauri P, Repiso A, Oliva B, et al: Characterization of the first described mutation of
erythrocytes. Arch Biochem Biophys 199:186–196, 1980. human red blood cell phosphoglycerate mutase. Biochim Biophys Acta 1740:403–410,
80. Perrotta S, Borriello A, Scaloni A, et al: The N-terminal 11 amino acids of human ery- 2005.
throcyte band 3 are critical for aldolase binding and protein phosphorylation: Implica- 112. Repiso A, Ramirez Bajo MJ, Corrons JL, et al: Phosphoglycerate mutase BB isoenzyme
tions for band 3 function. Blood 106:4359–4366, 2005. deficiency in a patient with non-spherocytic anemia: Familial and metabolic studies.
81. Izzo P, Costanzo P, Lupo A, et al: Human aldolase A gene. Structural organization and Haematologica 90:257–259, 2005.
tissue-specific expression by multiple promoters and alternate mRNA processing. Eur J 113. Hoorn RK: J., Filkweert JP, Staal GE: J. Purification and properties of enolase of human
Biochem 174:569–578, 1988. erythrocytes. Int J Biochem 5:845–852, 1974.
82. Wierenga RK, Kapetaniou EG, Venkatesan R: Triosephosphate isomerase: A highly 114. Kang HJ, Jung SK, Kim SJ, et al: Structure of human alpha-enolase (hENO1), a multi-
evolved biocatalyst. Cell Mol Life Sci 67:3961–3982, 2010. functional glycolytic enzyme. Acta Crystallogr D Biol Crystallogr 64:651–657, 2008.
83. Lu HS, Yuan PM, Gracy RW: Primary structure of human triosephosphate isomerase. 115. Stefanini M: Chronic hemolytic anemia associated with erythrocyte enolase deficiency
J Biol Chem 259:11958–11968, 1984. exacerbated by ingestion of nitrofurantoin. Am J Clin Pathol 58:408–414, 1972.
84. Mande SC, Mainfroid V, Kalk KH, et al: Crystal structure of recombinant human 116. Boulard-Heitzmann P, Boulard M, Tallineau C, et al: Decreased red cell enolase activity
triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related in a 40-year-old woman with compensated haemolysis. Scand J Haematol 33:401–404,
human genetic disorders and comparison with the trypanosomal enzyme. Protein Sci 1984.
3:810–821, 1994. 117. Noguchi T, Inoue H, Tanaka T: The M - and M -type isozymes of rat pyruvate kinase
1
2
85. Rodríguez-Almazán C, Arreola R, Rodríguez-Larrea D, et al: Structural basis of are produced from the same gene by alternative RNA splicing. J Biol Chem 261:
human triosephosphate isomerase deficiency: Mutation E104D is related to alterations 13807–13812, 1986.
of a conserved water network at the dimer interface. J Biol Chem 283:23254–23263, 118. Kanno H, Fujii H, Miwa S: Structural analysis of human pyruvate kinase L-gene and
2008. identification of the promoter activity in erythroid cells. Biochem Biophys Res Commun
86. Peters J, Hopkinson DA, Harris H: Genetic and non-genetic variation of triose phos- 188:516–523, 1992.
phate isomerase isozymes in human tissues. Ann Hum Genet 36:297–312, 1973. 119. Noguchi T, Yamada K, Inoue H, et al: The L- and R-type isozymes of rat pyruvate
87. Brown JR, Daar IO, Krug JR, et al: Characterization of the functional gene and several kinase are produced from a single gene by use of different promoters. J Biol Chem 262:
processed pseudogenes in the human triosephosphate isomerase gene family. Mol Cell 14366–14371, 1987.
Biol 5:1694–1706, 1985. 120. van Oirschot BA, Francois JJ, van Solinge WW, et al: Novel type of red blood cell pyru-
88. Rogalski AA, Steck TL, Waseem A: Association of glyceraldehyde-3-phosphate dehy- vate kinase hyperactivity predicts a remote regulatory locus involved in PKLR gene
drogenase with the plasma membrane of the intact human red blood cell. J Biol Chem expression. Am J Hematol 89:380–384, 2014.
264:6438–6446, 1989. 121. Kanno H, Fujii H, Hirono A, et al: CDNA cloning of human R-type pyruvate kinase
89. Tsai IH, Murthy SN, Steck TL: Effect of red cell membrane binding on the catalytic and identification of a single amino acid substitution (Thr →Met) affecting enzymatic
384
activity of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 257:1438–1442, stability in a pyruvate kinase variant (PK Tokyo) associated with hereditary hemolytic
1982. anemia. Proc Natl Acad Sci U S A 88:8218–8221, 1991.
90. Low PS, Rathinavelu P, Harrison ML: Regulation of glycolysis via reversible enzyme 122. Kahn A, Marie J, Garreau H, et al: The genetic system of the L-type pyruvate kinase
binding to the membrane protein, band 3. J Biol Chem 268:14627–14631, 1993. forms in man. Subunit structure, interrelation and kinetic characteristics of the pyru-
91. Mountassif D, Baibai T, Fourrat L, et al: Immunoaffinity purification and characteri- vate kinase enzymes from erythrocytes and liver. Biochim Biophys Acta 523:59–74,
zation of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. Acta 1978.
Biochim Biophys Sin (Shanghai) 41:399–406, 2009. 123. Kahn A, Marie J: Pyruvate kinases from human erythrocytes and liver. Methods Enzy-
92. Raje CI, Kumar S, Harle A, et al: The macrophage cell surface glyceraldehyde-3-phosphate mol 90:131–140, 1982.
dehydrogenase is a novel transferrin receptor. J Biol Chem 282:3252–3261, 2007. 124. Valentini G, Chiarelli LR, Fortin R, et al: Structure and function of human erythro-
93. Ismail SA, Park HW: Structural analysis of human liver glyceraldehyde-3-phosphate cyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. J Biol Chem
dehydrogenase. Acta Crystallogr D Biol Crystallogr 61:1508–1513, 2005. 277:23807–23814, 2002.
94. McCann SR, Finkel B, Cadman S, et al: Study of a kindred with hereditary spherocyto- 125. Enriqueta Muñoz M, Ponce E: Pyruvate kinase: Current status of regulatory and func-
sis and glyceraldehyde-3-phosphate dehydrogenase deficiency. Blood 47:171–181, 1976. tional properties. Comp Biochem Physiol B Biochem Mol Biol 135:197–218, 2003.
95. Huang IY, Welch CD, Yoshida A: Complete amino acid sequence of human phospho- 126. Wang C, Chiarelli LR, Bianchi P, et al: Human erythrocyte pyruvate kinase: Characteri-
glycerate kinase. Cyanogen bromide peptides and complete amino acid sequence. J Biol zation of the recombinant enzyme and a mutant form (R510Q) causing nonspherocytic
Chem 255:6412–6420, 1980. hemolytic anemia. Blood 98:3113–3120, 2001.
96. McCarrey JR, Thomas K: Human testis-specific PGK gene lacks introns and possesses 127. Fenton AW, Tang Q: An activating interaction between the unphosphorylated n-
characteristics of a processed gene. Nature 326:501–505, 1987. terminus of human liver pyruvate kinase and the main body of the protein is inter-
97. Banks RD, Blake CC, Evans PR, et al: Sequence, structure and activity of phosphoglyc- rupted by phosphorylation. Biochemistry 48:3816–3818, 2009.
erate kinase: A possible hinge-bending enzyme. Nature 279:773–777, 1979. 128. Jurica MS, Mesecar A, Heath PJ, et al: The allosteric regulation of pyruvate kinase by
98. Szabo J, Varga A, Flachner B, et al: Communication between the nucleotide site and the fructose-1,6-bisphosphate. Structure 6:195–210, 1998.
main molecular hinge of 3-phosphoglycerate kinase. Biochemistry 47:6735–6744, 2008. 129. Rigden DJ, Phillips SE, Michels PA, et al: The structure of pyruvate kinase from Leish-
99. Palmai Z, Chaloin L, Lionne C, et al: Substrate binding modifies the hinge bending mania mexicana reveals details of the allosteric transition and unusual effector specific-
characteristics of human 3-phosphoglycerate kinase: A molecular dynamics study. Pro- ity. J Mol Biol 291:615–635, 1999.
teins 77:319–329, 2009. 130. Valentini G, Chiarelli L, Fortin R, et al: The allosteric regulation of pyruvate kinase.
100. Ikura K, Sasaki R, Narita H, et al: Multifunctional enzyme, bisphosphoglyceromutase/ J Biol Chem 275:18145–18152, 2000.
2,3-bisphosphoglycerate phosphatase/phosphoglyceromutase from human erythro- 131. Wooll JO, Friesen RH, White MA, et al: Structural and functional linkages between
cytes. Eur J Biochem 66:515–522, 1976. subunit interfaces in mammalian pyruvate kinase. J Mol Biol 312:525–540, 2001.
101. Rose ZB: The enzymology of 2,3-bisphosphoglycerate. Adv Enzymol Relat Areas Mol 132. Fenton AW, Blair JB: Kinetic and allosteric consequences of mutations in the subunit
Biol 51:211–253, 1980. and domain interfaces and the allosteric site of yeast pyruvate kinase. Arch Biochem
102. Vora S, Spear D: Demonstration and quantitation of phosphoglycolate in human red Biophys 397:28–39, 2002.
cells. Clin Res 34:664A, 1986. 133. Blume KG, Hoffbauer RW, Busch D, et al: Purification and properties of pyruvate kinase
103. Fujii S, Beutler E: Where does phosphoglycolate come from in red cells? Acta Haematol in normal and in pyruvate kinase deficient human red blood cells. Biochim Biophys Acta
73:26–30, 1985. 227:364–372, 1971.
104. Sasaki H, Fujii S, Yoshizaki Y, et al: Phosphoglycolate synthesis by human erythrocyte 134. Kitamura M, Iijima N, Hashimoto F, et al: Hereditary deficiency of subunit H of lactate
pyruvate kinase. Acta Haematol 77:83–86, 1987. dehydrogenase. Clin Chim Acta 34:419–423, 1971.
105. Beutler E, West C: An improved assay and some properties of phosphoglycolate phos- 135. Joukyuu R, Mizuno S, Amakawa T, et al: Hereditary complete deficiency of lactate
phatase. Anal Biochem 106:163–168, 1980. dehydrogenase H-subunit. Clin Chem 35:687–690, 1989.
106. Wang Y, Wei Z, Bian Q, et al: Crystal structure of human bisphosphoglycerate mutase. 136. Wakabayashi H, Tsuchiya M, Yoshino K, et al: Hereditary deficiency of lactate dehydro-
J Biol Chem 279:39132–39138, 2004. genase H-subunit. Intern Med 35:550–554, 1996.
Kaushansky_chapter 47_p0689-0724.indd 714 9/17/15 6:45 PM

