Page 742 - Williams Hematology ( PDFDrive )
P. 742
716 Part VI: The Erythrocyte Chapter 47: Erythrocyte Enzyme Disorders 717
271. Longo L, Vanegas OC, Patel M, et al: Maternally transmitted severe glucose 6- 303. Zaucha JA, Yu C, Lothrop CD, Jr, et al: Severe canine hereditary hemolytic anemia
phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J 21:4229–4239, 2002. treated by nonmyeloablative marrow transplantation. Biol Blood Marrow Transplant
272. Takizawa T, Yoneyama Y, Miwa S, et al: A single nucleotide base transition is the basis 7:14–24, 2001.
of the common human glucose-6-phosphate dehydrogenase variant A(+). Genomics 304. Bader R, Bode G, Rebel W, et al: Stimulation of bone marrow by administration of
1:228–231, 1987. excessive doses of recombinant human erythropoietin. Pathol Res Pract 188:676–679,
273. Hirono A, Beutler E: Molecular cloning and nucleotide sequence of cDNA for human 1992.
glucose-6-phosphate dehydrogenase variant A(–). Proc Natl Acad Sci U S A 85: 305. Trobridge GD, Beard BC, Wu RA, et al: Stem cell selection in vivo using foamy vectors
3951–3954, 1988. cures canine pyruvate kinase deficiency. PLoS One 7:e45173, 2012.
274. Beutler E, Kuhl W, Vives-Corrons JL, et al: Molecular heterogeneity of glucose-6- 306. Tsujino K, Kanno H, Hashimoto K, et al: Delayed onset of hemolytic anemia in CBA-
phosphate dehydrogenase A-. Blood 74:2550–2555, 1989. Pk-1 /Pk-1 mice with a point mutation of the gene encoding red blood cell type pyru-
slc
slc
275. Vulliamy TJ, Othman A, Town M, et al: Polymorphic sites in the African population vate kinase. Blood 91:2169–2174, 1998.
detected by sequence analysis of the glucose-6-phosphate dehydrogenase gene out- 307. Kanno H, Utsugisawa T, Aizawa S, et al: Transgenic rescue of hemolytic anemia due to
line the evolution of the variants A and A–. Proc Natl Acad Sci U S A 88:8568–8571, red blood cell pyruvate kinase deficiency. Haematologica 92:731–737, 2007.
1991. 308. Meza NW, Alonso-Ferrero ME, Navarro S, et al: Rescue of pyruvate kinase deficiency in
276. Town M, Bautista JM, Mason PJ, et al: Both mutations in G6PD A– are necessary to mice by gene therapy using the human isoenzyme. Mol Ther 17:2000–2009, 2009.
produce the G6PD deficient phenotype. Hum Mol Genet. 1:171–174, 1992. 309. Kanno H: Hexokinase: Gene structure and mutations. Baillieres Best Pract Res Clin Hae-
277. Vulliamy TJ, D’Urso M, Battistuzzi G, et al: Diverse point mutations in the human matol 13:83–88, 2000.
glucose 6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe 310. Kanno H, Murakami K, Hariyama Y, et al: Homozygous intragenic deletion of type I
hemolytic anemia. Proc Natl Acad Sci U S A 85:5171–5175, 1988. hexokinase gene causes lethal hemolytic anemia of the affected fetus. Blood 100:1930,
278. Ho HY, Cheng ML, Chiu DT: Glucose-6-phosphate dehydrogenase-beyond the realm 2002.
of red cell biology. Free Radic Res 48:1028–1048, 2014. 311. de Vooght KM: K., van Solinge WW, van Wesel AC, et al: First mutation in the red
279. MacDonald D, Town M, Mason P, et al: Deficiency in red blood cells. Nature 350:115– blood cell-specific promoter of hexokinase combined with a novel missense muta-
115, 1991. tion causes hexokinase deficiency and mild chronic hemolysis. Haematologica 94:
280. Roos D, van Zwieten R, Wijnen JT, et al: Molecular basis and enzymatic properties 1203–1210, 2009.
of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic 312. Bianchi M, Magnani M: Hexokinase mutations that produce nonspherocytic hemolytic
anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood anemia. Blood Cells Mol Dis 21:2–8, 1995.
94:2955–2962, 1999. 313. Van Wijk R, Rijksen G, Huizinga EG, et al: HK Utrecht: Missense mutation in the active
281. van Bruggen R, Bautista JM, Petropoulou T, et al: Deletion of leucine 61 in glucose-6- site of human hexokinase associated with hexokinase deficiency and severe nonsphero-
phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dys- cytic hemolytic anemia. Blood 101:345–347, 2003.
function, and increased susceptibility to infections. Blood 100:1026–1030, 2002. 314. Peters LL, Lane PW, Andersen SG, et al: Downeast anemia (dea), a new mouse model of
282. van Wijk R, Huizinga EG, Prins I, et al: Distinct phenotypic expression of two de novo severe nonspherocytic hemolytic anemia caused by hexokinase (HK ) deficiency. Blood
I
missense mutations affecting the dimer interface of glucose-6-phosphate dehydroge- Cells Mol Dis 27:850–860, 2001.
nase. Blood Cells Mol Dis 32:112–117, 2004. 315. Kugler W, Lakomek M: Glucose-6-phosphate isomerase deficiency. Baillieres Best Pract
283. Smith JE, Ryer K, Wallace L: Glucose-6-phosphate dehydrogenase deficiency in a dog. Res Clin Haematol 13:89–101, 2000.
Enzyme 21:379–382, 1976. 316. Clarke JL, Vulliamy TJ, Roper D, et al: Combined glucose-6-phosphate dehydrogenase
284. Sanders S, Smith DP, Thomas GA, et al: A glucose-6-phosphate dehydrogenase (G6PD) and glucosephosphate isomerase deficiency can alter clinical outcome. Blood Cells Mol
splice site consensus sequence mutation associated with G6PD enzyme deficiency. Dis 30:258–263, 2003.
Mutat Res 374:79–87, 1997. 317. Repiso A, Oliva B, Vives Corrons JL, et al: Glucose phosphate isomerase deficiency:
285. Stockham SL, Harvey JW, Kinden DA: Equine glucose-6-phosphate dehydrogenase Enzymatic and familial characterization of Arg346His mutation. Biochim Biophys Acta
deficiency. Vet Pathol 31:518–527, 1994. 1740:467–471, 2005.
286. Rovira A, De Angioletti M, Camacho-Vanegas O, et al: Stable in vivo expression of 318. Repiso A, Oliva B, Vives-Corrons JL, et al: Red cell glucose phosphate isomerase (GPI):
glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem A molecular study of three novel mutations associated with hereditary nonspherocytic
cells by gene transfer. Blood 96:4111–4117, 2000. hemolytic anemia. Hum Mutat 27: 1159, 2006.
287. van Wijk R, van Solinge WW: The energy-less red blood cell is lost: Erythrocyte enzyme 319. Rossi F, Ruggiero S, Gallo M, et al: Amoxicillin-induced hemolytic anemia in a child
abnormalities of glycolysis. Blood 106:4034–4042, 2005. with glucose 6-phosphate isomerase deficiency. Ann Pharmacother 44:1327–1329,
288. Beutler E, Forman L, Rios-Larrain E: Elevated pyruvate kinase activity in patients with 2010.
hemolytic anemia due to red cell pyruvate kinase “deficiency.” Am J Med 83:899–904, 320. Warang P, Kedar P, Ghosh K, et al: Hereditary non-spherocytic hemolytic anemia and
1987. severe glucose phosphate isomerase deficiency in an Indian patient homozygous for the
289. Zanella A, Fermo E, Bianchi P, et al: Pyruvate kinase deficiency: The genotype- L487F mutation in the human GPI gene. Int J Hematol 96:263–267, 2012.
phenotype association. Blood Rev 21:217–231, 2007. 321. Read J, Pearce J, Li X, et al: The crystal structure of human phosphoglucose isomerase
290. Van Wijk R, Huizinga EG, Van Wesel AC: W., et al: Fifteen novel mutations in PKLR at 1.6 A resolution: Implications for catalytic mechanism, cytokine activity and haemo-
associated with pyruvate kinase (PK) deficiency: Structural implications of amino acid lytic anaemia. J Mol Biol 309:447–463, 2001.
substitutions in PK. Hum Mutat 30:446–453, 2009. 322. Lin HY, Kao YH, Chen ST, et al: Effects of inherited mutations on catalytic activity and
291. Demina A, Varughese KI, Barbot J, et al: Six previously undescribed pyruvate kinase structural stability of human glucose-6-phosphate isomerase expressed in Escherichia
mutations causing enzyme deficiency. Blood 92:647–652, 1998. coli. Biochim Biophys Acta 1794:315–323, 2009.
292. Aizawa S, Kohdera U, Hiramoto M, et al: Ineffective erythropoiesis in the spleen of a 323. Helleman PW, Van Biervliet JP: Haematological studies in a new variant of glucose-
patient with pyruvate kinase deficiency. Am J Hematol 74:68–72, 2003. phosphate isomerase deficiency (GPI Utrecht). Helv Paediatr Acta 30:525–536, 1976.
293. Aizawa S, Harada T, Kanbe E, et al: Ineffective erythropoiesis in mutant mice with defi- 324. Kahn A, Buc HA, Girot R, et al: Molecular and functional anomalies in two new mutant
cient pyruvate kinase activity. Exp Hematol 33:1292–1298, 2005. glucose-phosphate-isomerase variants with enzyme deficiency and chronic hemolysis.
294. Viprakasit V, Ekwattanakit S, Riolueang S, et al: Mutations in Krüppel-like factor 1 Hum Genet 40:293–304, 1978.
cause transfusion-dependent hemolytic anemia and persistence of embryonic globin 325. Schroter W, Eber SW, Bardosi A, et al: Generalised glucosephosphate isomerase (GPI)
gene expression. Blood 123:1586–1595, 2014. deficiency causing haemolytic anaemia, neuromuscular symptoms and impairment of
295. Durand PM, Coetzer TL: Pyruvate kinase deficiency protects against malaria in granulocytic function: A new syndrome due to a new stable GPI variant with dimin-
humans. Haematologica 93:939–940, 2008. ished specific activity (GPI Homburg). Eur J Pediatr 144:301–305, 1985.
296. Ayi K, Min-OoG, Serghides L, et al: Pyruvate kinase deficiency and malaria. N Engl J 326. Beutler E, West C, Britton HA, et al: Glucosephosphate isomerase (GPI) deficiency
Med 358:1805–1810, 2008. mutations associated with hereditary nonspherocytic hemolytic anemia (HNSHA).
297. Ayi K, Liles WC, Gros P, et al: Adenosine triphosphate depletion of erythrocytes simu- Blood Cells Mol Dis 23:402–409, 1997.
lates the phenotype associated with pyruvate kinase deficiency and confers protection 327. Zanella A, Izzo C, Rebulla P, et al: The first stable variant of erythrocyte glucose-
against Plasmodium falciparum in vitro. J Infect Dis 200:1289–1299, 2009. phosphate isomerase associated with severe hemolytic anemia. Am J Hematol 9:1–11, 1980.
298. Machado P, Pereira R, Rocha AM, et al: Malaria: Looking for selection signatures in the 328. Shalev O, Shalev RS, Forman L, et al: GPI Mount Scopus—a variant of glucosephos-
human PKLR gene region. Br J Haematol 149:775–784, 2010. phate isomerase deficiency. Ann Hematol 67:197–200, 1993.
299. Berghout J, Higgins S, Loucoubar C, et al: Genetic diversity in human erythrocyte pyru- 329. Chaput M, Claes V, Portetelle D, et al: The neurotrophic factor neuroleukin is 90%
vate kinase. Genes Immun 13:98–102, 2011. homologous with phosphohexose isomerase. Nature 332:454–455, 1988.
300. Machado P, Manco L, Gomes C, et al: Pyruvate kinase deficiency in sub-Saharan Africa: 330. Watanabe H, Takehana K, Date M, et al: Tumor cell autocrine motility factor is the
Identification of a highly frequent missense mutation (G829A;Glu277Lys) and associa- neuroleukin/phosphohexose isomerase polypeptide. Cancer Res 56:2960–2963, 1996.
tion with malaria. PLoS One 7:e47071, 2012. 331. Gurney ME, Heinrich SP, Lee MR, et al: Molecular cloning and expression of neuroleu-
301. Owen JL, Harvey JW: Hemolytic anemia in dogs and cats due to erythrocyte enzyme kin, a neurotrophic factor for spinal and sensory neurons. Science 234:566–574, 1986.
deficiencies. Vet Clin North Am Small Anim Pract 42:73–84, 2012. 332. Xu W, Seiter K, Feldman E, et al: The differentiation and maturation mediator for
302. Whitney KM, Goodman SA, Bailey EM, et al: The molecular basis of canine pyruvate human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose
kinase deficiency. Exp Hematol 22:866–874, 1994. isomerase. Blood 87:4502–4506, 1996.
Kaushansky_chapter 47_p0689-0724.indd 717 9/17/15 6:45 PM

