Page 742 - Williams Hematology ( PDFDrive )
P. 742

716  Part VI:  The Erythrocyte                                   Chapter 47:  Erythrocyte Enzyme Disorders            717




                    271. Longo L, Vanegas OC, Patel M, et al: Maternally transmitted severe glucose 6-     303. Zaucha JA, Yu C, Lothrop CD, Jr, et al: Severe canine hereditary hemolytic anemia
                     phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J 21:4229–4239, 2002.  treated by nonmyeloablative marrow transplantation. Biol Blood Marrow Transplant
                    272. Takizawa T, Yoneyama Y, Miwa S, et al: A single nucleotide base transition is the basis   7:14–24, 2001.
                     of the common human glucose-6-phosphate dehydrogenase variant A(+). Genomics     304. Bader R, Bode G, Rebel W, et al: Stimulation of bone marrow by administration of
                     1:228–231, 1987.                                      excessive doses of recombinant human erythropoietin. Pathol Res Pract 188:676–679,
                    273. Hirono A, Beutler E: Molecular cloning and nucleotide sequence of cDNA for human   1992.
                     glucose-6-phosphate dehydrogenase variant A(–).  Proc Natl Acad Sci U S A 85:     305. Trobridge GD, Beard BC, Wu RA, et al: Stem cell selection in vivo using foamy vectors
                     3951–3954, 1988.                                      cures canine pyruvate kinase deficiency. PLoS One 7:e45173, 2012.
                    274. Beutler E, Kuhl W, Vives-Corrons JL, et al: Molecular heterogeneity of glucose-6-     306. Tsujino K, Kanno H, Hashimoto K, et al: Delayed onset of hemolytic anemia in CBA-
                     phosphate dehydrogenase A-. Blood 74:2550–2555, 1989.  Pk-1 /Pk-1  mice with a point mutation of the gene encoding red blood cell type pyru-
                                                                              slc
                                                                                  slc
                    275. Vulliamy TJ, Othman A, Town M, et al: Polymorphic sites in the African population   vate kinase. Blood 91:2169–2174, 1998.
                     detected  by  sequence  analysis  of  the  glucose-6-phosphate  dehydrogenase  gene  out-    307. Kanno H, Utsugisawa T, Aizawa S, et al: Transgenic rescue of hemolytic anemia due to
                     line the evolution of the variants A and A–. Proc Natl Acad Sci U S A 88:8568–8571,     red blood cell pyruvate kinase deficiency. Haematologica 92:731–737, 2007.
                     1991.                                                308. Meza NW, Alonso-Ferrero ME, Navarro S, et al: Rescue of pyruvate kinase deficiency in
                    276. Town M, Bautista JM, Mason PJ, et al: Both mutations in G6PD A– are necessary to   mice by gene therapy using the human isoenzyme. Mol Ther 17:2000–2009, 2009.
                     produce the G6PD deficient phenotype. Hum Mol Genet. 1:171–174, 1992.    309. Kanno H: Hexokinase: Gene structure and mutations. Baillieres Best Pract Res Clin Hae-
                    277. Vulliamy TJ, D’Urso M, Battistuzzi G, et al: Diverse point mutations in the human   matol 13:83–88, 2000.
                     glucose 6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe     310. Kanno H, Murakami K, Hariyama Y, et al: Homozygous intragenic deletion of type I
                     hemolytic anemia. Proc Natl Acad Sci U S A 85:5171–5175, 1988.  hexokinase gene causes lethal hemolytic anemia of the affected fetus. Blood 100:1930,
                    278. Ho HY, Cheng ML, Chiu DT: Glucose-6-phosphate dehydrogenase-beyond the realm   2002.
                     of red cell biology. Free Radic Res 48:1028–1048, 2014.    311. de Vooght KM: K., van Solinge WW, van Wesel AC, et al: First mutation in the red
                    279. MacDonald D, Town M, Mason P, et al: Deficiency in red blood cells. Nature 350:115–  blood cell-specific promoter of hexokinase combined with a novel missense muta-
                     115, 1991.                                            tion  causes  hexokinase  deficiency and  mild  chronic  hemolysis.  Haematologica  94:
                    280. Roos D, van Zwieten R, Wijnen JT, et al: Molecular basis and enzymatic properties   1203–1210, 2009.
                     of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic     312. Bianchi M, Magnani M: Hexokinase mutations that produce nonspherocytic hemolytic
                     anemia,  granulocyte  dysfunction,  and  increased  susceptibility  to infections.  Blood   anemia. Blood Cells Mol Dis 21:2–8, 1995.
                     94:2955–2962, 1999.                                  313. Van Wijk R, Rijksen G, Huizinga EG, et al: HK Utrecht: Missense mutation in the active
                    281. van Bruggen R, Bautista JM, Petropoulou T, et al: Deletion of leucine 61 in glucose-6-  site of human hexokinase associated with hexokinase deficiency and severe nonsphero-
                     phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dys-  cytic hemolytic anemia. Blood 101:345–347, 2003.
                     function, and increased susceptibility to infections. Blood 100:1026–1030, 2002.    314. Peters LL, Lane PW, Andersen SG, et al: Downeast anemia (dea), a new mouse model of
                    282. van Wijk R, Huizinga EG, Prins I, et al: Distinct phenotypic expression of two de novo   severe nonspherocytic hemolytic anemia caused by hexokinase (HK ) deficiency. Blood
                                                                                                                 I
                     missense mutations affecting the dimer interface of glucose-6-phosphate dehydroge-  Cells Mol Dis 27:850–860, 2001.
                     nase. Blood Cells Mol Dis 32:112–117, 2004.          315. Kugler W, Lakomek M: Glucose-6-phosphate isomerase deficiency. Baillieres Best Pract
                    283. Smith JE, Ryer K, Wallace L: Glucose-6-phosphate dehydrogenase deficiency in a dog.   Res Clin Haematol 13:89–101, 2000.
                     Enzyme 21:379–382, 1976.                             316. Clarke JL, Vulliamy TJ, Roper D, et al: Combined glucose-6-phosphate dehydrogenase
                    284. Sanders S, Smith DP, Thomas GA, et al: A glucose-6-phosphate dehydrogenase (G6PD)   and glucosephosphate isomerase deficiency can alter clinical outcome. Blood Cells Mol
                     splice site consensus sequence mutation associated with G6PD enzyme deficiency.   Dis 30:258–263, 2003.
                     Mutat Res 374:79–87, 1997.                           317. Repiso A, Oliva B, Vives Corrons JL, et al: Glucose phosphate isomerase deficiency:
                    285. Stockham SL, Harvey JW, Kinden DA: Equine glucose-6-phosphate dehydrogenase   Enzymatic and familial characterization of Arg346His mutation. Biochim Biophys Acta
                     deficiency. Vet Pathol 31:518–527, 1994.              1740:467–471, 2005.
                    286. Rovira A, De Angioletti M, Camacho-Vanegas O, et al: Stable in vivo expression of     318. Repiso A, Oliva B, Vives-Corrons JL, et al: Red cell glucose phosphate isomerase (GPI):
                     glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem   A molecular study of three novel mutations associated with hereditary nonspherocytic
                     cells by gene transfer. Blood 96:4111–4117, 2000.     hemolytic anemia. Hum Mutat 27: 1159, 2006.
                    287. van Wijk R, van Solinge WW: The energy-less red blood cell is lost: Erythrocyte enzyme     319. Rossi F, Ruggiero S, Gallo M, et al: Amoxicillin-induced hemolytic anemia in a child
                     abnormalities of glycolysis. Blood 106:4034–4042, 2005.  with glucose 6-phosphate isomerase deficiency.  Ann  Pharmacother 44:1327–1329,
                    288. Beutler E, Forman L, Rios-Larrain E: Elevated pyruvate kinase activity in patients with   2010.
                     hemolytic anemia due to red cell pyruvate kinase “deficiency.” Am J Med 83:899–904,     320. Warang P, Kedar P, Ghosh K, et al: Hereditary non-spherocytic hemolytic anemia and
                     1987.                                                 severe glucose phosphate isomerase deficiency in an Indian patient homozygous for the
                    289. Zanella A, Fermo E, Bianchi P, et al: Pyruvate kinase deficiency: The genotype-   L487F mutation in the human GPI gene. Int J Hematol 96:263–267, 2012.
                     phenotype association. Blood Rev 21:217–231, 2007.    321. Read J, Pearce J, Li X, et al: The crystal structure of human phosphoglucose isomerase
                    290. Van Wijk R, Huizinga EG, Van Wesel AC: W., et al: Fifteen novel mutations in PKLR   at 1.6 A resolution: Implications for catalytic mechanism, cytokine activity and haemo-
                     associated with pyruvate kinase (PK) deficiency: Structural implications of amino acid   lytic anaemia. J Mol Biol 309:447–463, 2001.
                     substitutions in PK. Hum Mutat 30:446–453, 2009.     322. Lin HY, Kao YH, Chen ST, et al: Effects of inherited mutations on catalytic activity and
                    291. Demina A, Varughese KI, Barbot J, et al: Six previously undescribed pyruvate kinase   structural stability of human glucose-6-phosphate isomerase expressed in Escherichia
                     mutations causing enzyme deficiency. Blood 92:647–652, 1998.  coli. Biochim Biophys Acta 1794:315–323, 2009.
                    292. Aizawa S, Kohdera U, Hiramoto M, et al: Ineffective erythropoiesis in the spleen of a     323. Helleman PW, Van Biervliet JP: Haematological studies in a new variant of glucose-
                     patient with pyruvate kinase deficiency. Am J Hematol 74:68–72, 2003.  phosphate isomerase deficiency (GPI Utrecht). Helv Paediatr Acta 30:525–536, 1976.
                    293. Aizawa S, Harada T, Kanbe E, et al: Ineffective erythropoiesis in mutant mice with defi-    324. Kahn A, Buc HA, Girot R, et al: Molecular and functional anomalies in two new mutant
                     cient pyruvate kinase activity. Exp Hematol 33:1292–1298, 2005.  glucose-phosphate-isomerase variants with enzyme deficiency and chronic hemolysis.
                    294. Viprakasit V, Ekwattanakit S, Riolueang S, et al: Mutations in Krüppel-like factor 1   Hum Genet 40:293–304, 1978.
                     cause transfusion-dependent hemolytic anemia and persistence of embryonic globin     325. Schroter W, Eber SW, Bardosi A, et al: Generalised glucosephosphate isomerase (GPI)
                     gene expression. Blood 123:1586–1595, 2014.           deficiency causing haemolytic anaemia, neuromuscular symptoms and impairment of
                    295. Durand PM, Coetzer TL: Pyruvate kinase deficiency protects against malaria in   granulocytic function: A new syndrome due to a new stable GPI variant with dimin-
                     humans. Haematologica 93:939–940, 2008.               ished specific activity (GPI Homburg). Eur J Pediatr 144:301–305, 1985.
                    296. Ayi K, Min-OoG, Serghides L, et al: Pyruvate kinase deficiency and malaria. N Engl J     326. Beutler E, West C, Britton HA, et al: Glucosephosphate isomerase (GPI) deficiency
                     Med 358:1805–1810, 2008.                              mutations associated with hereditary nonspherocytic hemolytic anemia (HNSHA).
                    297. Ayi K, Liles WC, Gros P, et al: Adenosine triphosphate depletion of erythrocytes simu-  Blood Cells Mol Dis 23:402–409, 1997.
                     lates the phenotype associated with pyruvate kinase deficiency and confers protection     327. Zanella A, Izzo C, Rebulla P, et al: The first stable variant of erythrocyte glucose-
                     against Plasmodium falciparum in vitro. J Infect Dis 200:1289–1299, 2009.  phosphate isomerase associated with severe hemolytic anemia. Am J Hematol 9:1–11, 1980.
                    298. Machado P, Pereira R, Rocha AM, et al: Malaria: Looking for selection signatures in the     328. Shalev O, Shalev RS, Forman L, et al: GPI Mount Scopus—a variant of glucosephos-
                     human PKLR gene region. Br J Haematol 149:775–784, 2010.  phate isomerase deficiency. Ann Hematol 67:197–200, 1993.
                    299. Berghout J, Higgins S, Loucoubar C, et al: Genetic diversity in human erythrocyte pyru-    329. Chaput M, Claes V, Portetelle D, et al: The neurotrophic factor neuroleukin is 90%
                     vate kinase. Genes Immun 13:98–102, 2011.             homologous with phosphohexose isomerase. Nature 332:454–455, 1988.
                    300. Machado P, Manco L, Gomes C, et al: Pyruvate kinase deficiency in sub-Saharan Africa:     330. Watanabe H, Takehana K, Date M, et al: Tumor cell autocrine motility factor is the
                     Identification of a highly frequent missense mutation (G829A;Glu277Lys) and associa-  neuroleukin/phosphohexose isomerase polypeptide. Cancer Res 56:2960–2963, 1996.
                     tion with malaria. PLoS One 7:e47071, 2012.          331. Gurney ME, Heinrich SP, Lee MR, et al: Molecular cloning and expression of neuroleu-
                    301. Owen JL, Harvey JW: Hemolytic anemia in dogs and cats due to erythrocyte enzyme   kin, a neurotrophic factor for spinal and sensory neurons. Science 234:566–574, 1986.
                     deficiencies. Vet Clin North Am Small Anim Pract 42:73–84, 2012.    332. Xu W, Seiter K, Feldman E, et al: The differentiation and maturation mediator for
                    302. Whitney KM, Goodman SA, Bailey EM, et al: The molecular basis of canine pyruvate   human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose
                     kinase deficiency. Exp Hematol 22:866–874, 1994.      isomerase. Blood 87:4502–4506, 1996.







          Kaushansky_chapter 47_p0689-0724.indd   717                                                                   9/17/15   6:45 PM
   737   738   739   740   741   742   743   744   745   746   747