Page 1199 - Clinical Immunology_ Principles and Practice ( PDFDrive )
P. 1199

1164         ParT TEN  Prevention and Therapy of Immunological Diseases


        correction are being developed that may broaden indications   12.  Bauer TR Jr, Hickstein DD. Gene therapy for leukocyte adhesion
        for PIDs that may be treated by gene therapy (e.g., XHIM, XLA,   deficiency. Curr Opin Mol Ther 2000;2:383–8.
        etc.). Thus, the continued efforts of scientists and physicians to   13.  Güngör T, Teira P, Slatter M, et al. Reduced-intensity conditioning and
        develop gene therapy are leading to a new therapeutic modality,   HLA-matched haemopoietic stem-cell transplantation in patients with
        ideally to permanently and safely cure these diseases.    chronic granulomatous disease: a prospective multicentre study. Lancet
                                                                  2014;383:436–48. Available from: http://www.ncbi.nlm.nih.gov/
                                                                  pubmed/24161820.
            ON THE HOrIZON                                     14.  Santilli G, Almarza E, Brendel C, et al. Biochemical correction of X-CGD
          •  Continued expansion of the genetic types of PID being treated by   by a novel chimeric promoter regulating high levels of transgene
           gene  addition  using  integrating  vectors  (e.g.  other  forms  of  SCID,   expression in myeloid cells. Mol Ther 2011;19:122–32.
           other forms of CGD, LAD, HLH, etc.).                15.  De Ravin SS, Reik A, Liu P-Q, et al. Targeted gene addition in human
          •  Development of safe and effective marrow conditioning regimens   CD34+ hematopoietic cells for correction of X-linked chronic
           that are not chemotherapy-based (e.g. monoclonal antibodies)  granulomatous disease. Nat Biotechnol. Nature Publishing Group
          •  Application of gene editing to broader spectrum of PIDs: e.g. X-linked   2016;(February):1–8. Available from: http://www.nature.com/doifinder/
           agammaglobulinemia,  X-linked  Hyper-IgM syndrome (CD40  ligand   10.1038/nbt.3513.
           deficiency), RAG1-deficient SCID, Gain of Function STAT1, IPEX).  16.  Becker-Herman S, Meyer-Bahlburg A, Schwartz MA, et al. WASp-deficient
          •  Understand the molecular pathogenesis of more PID (e.g. CVID, auto-  B cells play a critical, cell-intrinsic role in triggering autoimmunity. J Exp
           immune) and develop effective gene therapy approaches. (Some may   Med 2011;208:2033–42.
           require more than just HSC correction, e.g. ataxia telangiectasia).  17.  Boztug K, Schmidt M, Schwarzer A, et al. Stem-cell gene therapy for the
          •  Production of autologous HSC by cellular reprogramming coupled to   Wiskott-Aldrich syndrome. N Engl J Med 2010;363:1918–27.
           effective expansion of HSC                          18.  Charrier S, Dupré L, Scaramuzza S, et al. Lentiviral vectors targeting
                                                                  WASp expression to hematopoietic cells, efficiently transduce and correct
        Please check your eBook at https://expertconsult.inkling.com/   cells from WAS patients. Gene Ther 2007;14:415–28. Available from:
        for self-assessment questions. See inside cover for registration   http://www.nature.com/doifinder/10.1038/sj.gt.3302863%5Cnpapers3://
        details.                                                  publication/doi/10.1038/sj.gt.3302863.
                                                               19.  Scaramuzza S, Biasco L, Ripamonti A, et al. Preclinical safety and
        REFERENCES                                                efficacy of human CD34+ Cells transduced with lentiviral vector for the
                                                                  treatment of Wiskott-Aldrich syndrome. Mol Ther 2013;21:
         1.  Stewart FM, Crittenden RB, Lowry PA, et al. Long-term engraftment of   175–84. Available from: http://dx.doi.org/10.1038/mt.2012.23/
           normal and post-5-fluorouracil murine marrow into normal   nature06264.
           nonmyeloablated mice. Blood 1993;81:2566–71.        20.  Hacein-Bey Abina S, Gaspar HB, Blondeau J, et al. Outcomes following
         2.  Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene   gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA
           therapy for ADA- SCID: initial trial results after 4 years. Science   2015;313:1550–63. Available from: http://jama.jamanetwork.com/
           1995;270:475–80.                                       article.aspx?doi=10.1001/jama.2015.3253.
         3.  Candotti F, Shaw KL, Muul L, et al. Gene therapy for adenosine   21.  Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell
           deaminase – deficient severe combined immune deficiency : clinical   gene therapy in patients with Wiskott-Aldrich syndrome. Science
           comparison of retroviral vectors and treatment plans. Blood   2013;341:1233151. Available from: http://www.ncbi.nlm.nih.gov/
           2012;120:3635–46.                                      pubmed/23845947.
         4.  Cicalese MP, Ferrua F, Castagnaro L, et al. Update on the safety and   22.  Pala F, Morbach H, Castiello MC, et al. Lentiviral-mediated gene therapy
           efficacy of retroviral gene therapy for immunodeficiency due to   restores B cell tolerance in Wiskott-Aldrich syndrome patients. J Clin
           adenosine deaminase deficiency. Blood 2016;128:45–54.  Invest 2015;125:3941–51. Available from: http://www.pubmedcentral
         5.  Shaw KL, Sokolic R, Davila A, et al. Phase II clinical trial of gene therapy   .nih.gov/articlerender.fcgi?artid=4607131&tool=pmcentrez&rendertype
           for adenosine deaminase-deficient severe combined immune deficiency   =abstract.
           (ADA-SCID). Mol Ther 2014;22(Suppl. 1):S107.        23.  Astrakhan A, Sather BD, Ryu BY, et al. Ubiquitous high-level gene
         6.  Candotti F, Johnston JA, Puck JM, et al. Retroviral-mediated gene   expression in hematopoietic lineages provides effective lentiviral gene
           correction for X-linked severe combined immunodeficiency. Blood   therapy of murine Wiskott-Aldrich syndrome. Blood 2012;119:
           1996;87:3097–102. Available from: http://www.ncbi.nlm.nih.gov/  4395–407.
           pubmed/8605322.                                     24.  Ng YY, Baert MRM, Pike-Overzet K, et al. Correction of B-cell
         7.  Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Role of   development in Btk-deficient mice using lentiviral vectors with
           interleukin-2 (IL-2), IL-7, and IL-15 in natural killer cell differentiation   codon-optimized human BTK. Leukemia 2010;24:1617–30.
           from cord blood hematopoietic progenitor cells and from gamma c   25.  Kerns HM, Ryu BY, Stirling BV, et al. B cell-specific lentiviral
           transduced severe combined immunodeficiency X1 bone marrow cells.   gene therapy leads to sustained B-cell functional recovery in a
           Blood 1996;88:3901–9.                                  murine model of X-linked agammaglobulinemia. Blood 2010;115:
         8.  Hacein-Bey-Abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for   2146–55.
           X-linked severe combined immunodeficiency. N Engl J Med   26.  Hagin D, Burroughs L, Torgerson TR. Hematopoietic Stem Cell
           2010;363:355–64. Available from: http://www.pubmedcentral.nih.gov/  Transplant for Immune Deficiency and Immune Dysregulation Disorders.
           articlerender.fcgi?artid=2957288&tool=pmcentrez&rendertype=abstract.  Immunol Allergy Clin North Am 2015;35:695–711.
         9.  Gaspar HB, Cooray S, Gilmour KC, et al. Long-term persistence of a   27.  Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous
           polyclonal T Cell pepertoire after gene therapy for X-linked severe   CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:
           combined immunodeficiency. Sci Transl Med 2011;3:97ra79.  901–10. Available from: http://www.pubmedcentral.nih.gov/articlerender.
        10.  Hacein-Bey-Abina S, Pai S-Y, Gaspar HB, et al. A modified γ-retrovirus   fcgi?artid=4084652&tool=pmcentrez&rendertype=abstract.
           vector for X-linked severe combined immunodeficiency. N Engl J Med   28.  Porteus MH, Baltimore D. Gene Targeting in Human Cells. Science
           2014;371:1407–17. Available from: http://www.nejm.org/doi/abs/   2003;300(May):75390.
           10.1056/NEJMoa1404588.                              29.  Brown MP, Topham DJ, Sangster MY, et al. Thymic lymphoproliferative
        11.  De Ravin SS, Wu X, Moir S, et al. Lentiviral hematopoietic stem cell gene   disease after successful correction of CD40 ligand deficiency by gene
           therapy for X-linked severe combined immunodeficiency. Sci Transl Med   transfer in mice. Nat Med 1998;4:1253–60.
           2016;8:335ra57. Available from: http://stm.sciencemag.org/  30.  Pagovich OE, Qui T, Whaley AS, et al. One-time gene therapy for
           content/8/335/335ra57.figures-only.                    hereditary angioedema. Mol Ther 2016;24(Suppl. 1):S298.
   1194   1195   1196   1197   1198   1199   1200   1201   1202   1203   1204