Page 25 - mathsvol1ch1to3ans
P. 25

25


                                                                                                 (x + 3)(x − 2)
                          Interval    Sign of (x + 3)  Sign of (x − 2)  Sign of (x + 4)  Sign of                 ≥ 0
                                                                                                    5(x + 4)

                         (−∞, −4)           −                −                 −                      −

                          (−4, −3)          −                −                 +                      +


                           (−3, 2)          +                −                 +                      −

                           (2, ∞)           +                +                 +                      +
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com


                        So the inequality is satisfied in [−4, 3] ∪ [2, ∞].


                    Exercise - 2.14



                    Resolve the following rational expressions into partial fractions.
                            1                    3x + 1                      x                   x                    1
                      1.                  2.                   3.                          4.                   5.
                                                                     2
                                                                                                                    4
                           2
                         x − a  2            (x − 2)(x + 1)       (x + 1)(x − 1)(x + 2)       (x − 1) 3            x − 1
                                               2
                                                                    3
                                                                                                   1
                                                                                                                        2
                         (x − 1) 2            x + x + 1           x + 2x + 1                      x + 12             6x − x + 1
                      6.                  7.                   8.                          9.                  10.
                           3
                                               2
                                                                    2
                                                                                                                    3
                                                                                                     2
                                                                                                                          2
                          x + x              x − 5x + 6           x + 5x + 6                  (x + 1) (x − 2)      x + x + x + 1
                            2
                                                                      3
                         2x + 5x − 11             7 + x              x − 1
                     11.                 12.                  13.            .
                                                           2
                                                                    2
                            2
                          x + 2x − 3         (1 + x)(1 + x )      x + x + 1
                           1
                     1.
                         2
                        x − a  2
                                    1          A         B
                        Let               =         +
                                 x − a  2    x − a     x + a
                                   2
                      Then 1 = A(x + a) + B(x − a)
                                             1                          1
                         When x = a, A =         When x = −a, B = −
                                            2a                          2a
                                 1             1                1
                       Hence           =               −
                              x − a  2    (2a)(x − a)      (2a)(x + a)
                                2
                            3x + 1
                     2.
                        (x − 2)(x + 1)
                                            3x + 1           A         B
                        Let                             =         +
                                        (x − 2)(x + 1)     x − 2      x + 1
                      Then 3x + 1 = A(x + 1) + B(x − 2)
                                         7                       2
                      When x = 2, A =        When x = −1, B =
                                         3                       3
                                  3x + 1            7            2
                      Hence                  =             +
                              (x − 2)(x + 1)     3(x − 2)     3(x + 1)
                                     x
                     3.
                           (x + 1)(x − 1)(x + 2)
                             2
                                     x                Ax + B        C         D
                     Let                           =           +         +
                             2
                                                        2
                           (x + 1)(x − 1)(x + 2)       x + 1      x − 1     x + 2
                                                                                          2
                                                                   2
                     Then x = (Ax + B)(x − 1)(x + 2) + (C)(x + 1)(x + 2) + (D)(x + 1)(x − 1)
   20   21   22   23   24   25   26   27   28   29   30