Page 29 - mathsvol1ch1to3ans
P. 29

29

                                  3
                                 x − 1
                     13.
                               x + x + 1
                                2
                                                        2
                                  3
                                 x − 1        (x − 1)(x + x + 1)
                     Since                 =                      ,
                                                    2
                                2
                               x + x + 1           x + x + 1
                     We have               = x − 1

                    Exercise - 2.15

                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                    Determine the region in the plane determined by the inequalities:
                    (1) x ≤ 3y,    x ≥ y.
                    (2) y ≥ 2x,    −2x + 3y ≤ 6.
                    (3) 3x + 5y ≥ 45, x ≥ 0, y ≥ 0.
                    (4) 2x + 3y ≤ 35, y ≥ 2, x ≥ 5.
                    (5) 2x + 3y ≤ 6, x + 4y ≤ 4, x ≥ 0, y ≥ 0.
                    (6) x − 2y ≥ 0, 2x − y ≤ −2, x ≥ 0, y ≥ 0.
                    (7) 2x + y ≥ 8, x + 2y ≥ 8, x + y ≤ 6.





                    Exercise - 2.16


                     1. Simplify:
                                   2                2

                                                 3
                        (a) (125)  3        = (5 )  3        = 5  2      = 25
                                  −3                −3

                                                 4
                        (b) (16)   4  ,     = (2 )  4        = 2  (−3)   =   1
                                                                             8
                                      −2                 −2

                                                      3
                        (c) (−1000)    3  , = (−(10) )   3   = −10   (−2)  =  1
                                                                             100
                                      !
                                    1
                                    3
                        (d) (3) (−6)   ,    = (3) (−2)       =   1
                                                                 9
                                  −2

                             (27)  3                 −1
                        (e)           .     = (27)   3       = (3) (−1)  =   1
                                  −1                                         3

                             (27)  3
                                               −1
                                                  3
                     2. Evaluate   (256) −1/2  4  .
                        Solution:
                                                               3
                                      −1             −1/2  4                 −1
                                          3                −1                    3
                                                                                      3
                           (256) −1/2  4   =      2 (8)          =    2 (−4)  4   = 2 = 8
                                       ) = 9/2, then find the value of (x
                     3. If (x 1/2  + x −1/2 2                          1/2  − x −1/2 ) for x > 1.
                                                                 p
                                                         −1/2
                                                  1/2
                        Solution: We know that (x    − x     ) =   (x 1/2  + x −1/2 2
                                                                                ) − 4.
                                       q          q
                        Hence we have     9  − 4 =  1  =  1
                                          2         4    2
                                                               2n 2 −n
                                                              3 9 3
                     4. Simplify and hence find the value of n:          = 27.
                                                                 3 3n
                        Solution:
   24   25   26   27   28   29   30   31   32   33   34