Page 28 - mathsvol1ch1to3ans
P. 28

28

                     Then x + 12 = A(x + 1)(x − 2) + B(x − 2) + C(x + 1)        2
                                             14
                     When x = 2       C =
                                              9
                                             11
                     When x = −1 B = −
                                              3
                                                                  14
                                  2
                     Comparing x coefficients, we have A = −
                                                                  9
                                 x + 12             14           14           11
                     Hence                   =            −            −
                                    2
                            (x + 1) (x − 2)      9(x − 2)     9(x + 1)     3(x + 1) 2
                              2
                           6x − x + 1
                     10.
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                           3
                                2
                         x + x + x + 1
                              2
                           6x − x + 1         Ax + B        C
                     Let                   =          +
                                                2
                                2
                           3
                         x + x + x + 1        x + 1       x + 1
                                                                     2
                             2
                     Then 6x − x + 1 = (Ax + B)(x + 1) + (C)(x + 1)
                     When x = −1 C =         4
                     When x = 0       B = −3
                                  2
                     Comparing x coefficients, we have A = 2
                                 2
                              6x − x + 1         2x - 3       4
                     Hence                    =          +
                            x + x + x + 1        x + 1      x + 1
                                   2
                                                  2
                              3
                            2
                         2x + 5x − 11
                     11.
                            2
                           x + 2x − 3
                            2
                         2x + 5x − 11               B         C
                     Let                 = A +           +
                            2
                           x + 2x − 3             x − 1     x + 3
                             2
                     Then 2x + 5x − 11 = A(x − 1)(x + 3) + B(x + 3) + C(x − 1)
                     When x = 1       B = −1
                     When x = −3 C = 2
                     Comparing coefficients of x  2  we have A = 2
                                2
                             2x + 5x − 11              1         2
                     Hence                   = 2 −          +
                                2
                              x + 2x − 3             x − 1     x + 3
                              7 + x
                     12.
                                       2
                         (1 + x)(1 + x )
                              7 + x            A        Bx + C
                     Let                  =         +
                                       2
                         (1 + x)(1 + x )      1 + x     1 + x 2
                                             2
                     Then 7 + x = A(1 + x ) + (Bx + C)(1 + x)
                     When x = −1 A = 3
                     Comparing coefficients of x  2  we have A + B = 0
                     Comparing coefficients of x     we have B + C = 1
                     Solving the above equations, we have B = −3 and C = 4
                                  7 + x            3       4 − 3x
                     Hence                    =         +
                                           2
                             (1 + x)(1 + x )     1 + x     1 + x 2
   23   24   25   26   27   28   29   30   31   32   33