Page 32 - mathsvol1ch1to3ans
P. 32

32

                                                             2
                        Comparing both sides,      7 =      a + 10b 2
                                                                                1
                         and                       1 =         ab        ⇒ a =
                                                                                 b
                                                            1
                        Hence from first equation 7 =           + 10b 2
                                                            b 2
                                                    2
                                                  7b =      1 + 10b 4
                                                              √
                                                          7 ±   49 − 40
                        Solving forb 2                =
                                                               20
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                           4        1
                                                      =      or −
                                                           5       10
                                                                4
                        Since b is non negative    b =
                                                                5
                                                                5
                        and                        a =
                                                                4
                                                                         5    4 √
                        Hence the square root is                =          +     10
                                                                         4    5

                                                                           1            √
                                                                =               (25 + 16 10)
                                                                           20





                    Exercise - 2.17


                                                          x
                     1. Let b > 0 and b 6= 1. Express y = b in logarithmic form. Also state the domain and range of the
                        logarithmic function.
                        Solution: The logarithmic form is log y = x. The domain is (0, ∞) and the range is (−∞, ∞)
                                                            b
                     2. Compute log 27 − log 9 .
                                    9
                                              27
                        Solution:
                                                       3
                        log 27 − log 9        = log 2 3 − log 3 3 2
                                                    3
                                     27
                           9
                                                              3
                                                            x
                                                       x
                        Using the expression     log y a =
                                                    a
                                                            y
                                                 3   2
                                              =    −
                                                 2   3
                                                 5
                                              =
                                                 6
                     3. Solve log x + log x + log x = 11.
                                         4
                                                  2
                                 8
                                          1        1        1
                        Solution:Given        +        +        = 11.
                                        log 8    log 4    log 2
                                                             x
                                           x
                                                    x
                           1          1        1
                                +          +        = 11. Hence we have
                        3 log 2    2 log 2   log 2
                             x         x        x
                          1     1    1
                                  +    + 1   = 11.
                        log 2   3    2
                           x
                          1     11
                                     = 11.
                        log 2    6
                           x
                          1
                                                      6
                               = 6 log x = 6 ⇒ x = 2 = 64.
                        log 2         2
                           x
   27   28   29   30   31   32   33   34   35   36   37