Page 34 - mathsvol1ch1to3ans
P. 34

34


                           log x    log y    log z
                    10. If      =         =       , then prove that xyz = 1.
                          y − z    z − x    x − y

                                      log x    log y    log z
                        Solution: Let       =        =        = log k.
                                      y − z    z − x    x − y
                        log x = k(y − z) log y = k(z − x) log z = k(x − y)


                        log xyz = log x + log y + log z

                                 = k(y − z) + k(z − x) + k(x − y)
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                 = 0
                            xyz = 1



                    11. Solve log x − 3 log 1 x = 6.
                                 2
                                           2
                        Solution: The given expression can be rewritten as
                           1         3
                                −          = 6
                         log 2     log x  1
                            x
                           1         3  2
                                +          = 6
                         log 2     log 2
                            x         x
                                     4
                                           = 6
                                   log 2
                                      x
                                   4 log x = 6
                                       2
                                               3
                                   log x   =
                                      2
                                               2
                                         3
                                                √
                                   x = 22 = 2 2

                                      2
                    12. Solve log 5−x (x − 6x + 65) = 2.
                        Solution:Rewriting in exponential form we have

                                            2
                        (5 − x) 2       = x − 6x + 65
                                            2
                               2
                        25 + x − 10x = x − 6x + 65
                        4x              = −40

                        x               = −10
                    Exercise 3.1:

                    1. Identify the quadrant in which an angle of each given measure lies
                                                                                               ◦
                        (i)  25 ◦  − first quadrant    (ii) 825 ◦  − second quadrant (iii) −55 − fourth quadrant
                                ◦
                                                                ◦
                        (iv) 328 − fourth quadrant (v) −230 − second quadrant
                                                                                               ◦
                    2. For each given angle, find a coterminal angle with measure of θ such that 0 ≤ θ < 360 ◦
                                                                           ◦
                                          ◦
                                                               ◦
                        (i)  395 ◦  ≡ 35 (ii) 525   ◦   ≡ 165 (iii) 1150 ≡ 70     ◦
                                          ◦
                                  ◦
                                                      ◦
                        (iv) −270 ≡ 90 (v) −450 ≡ 270          ◦
   29   30   31   32   33   34   35   36   37   38   39