Page 37 - mathsvol1ch1to3ans
P. 37

37

                                                                                            2
                   10. If cot θ (1 + sin θ) = 4m and cot θ (1 − sin θ) = 4n, then prove that m − n 2    2  = mn.
                       Solution:
                                 4m = cot θ + cos θ

                                  4n = cot θ + cos θ

                           4(m + n) = 2 cot θ

                           4(m − n) = 2 cos θ

                           2(m + n) = cot θ
                       sec θ = Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                           2(m − n) = cot θ
                                  2
                             2
                         4(m − n ) = cot θ cos θ
                                                                                         2
                                                                               2
                                                              2
                                                                                                    2
                                                                    2
                                                           cos θ cos θ     cos θ(1 − sin θ)      cos θ
                                  2
                                            2
                             2
                                                                                                             2
                                                  2
                        16(m − n ) = cot θ cos θ        =               =                     =        − cos θ
                                                                                    2
                                                                 2
                                                                                                    2
                                                              sin θ              sin θ           sin θ
                                                    2
                                            2
                                     = cot θ − cos θ
                                     = 16mn
                                                                   3
                                                                                          2
                                                                                               2
                                                                                     2 2
                                            3
                   11. If cosec θ − sin θ = a and sec θ − cos θ = b , then prove that a b (a + b ) = 1.
                       Solution:
                                                                                        2
                                                                              2
                                                       1               1 − sin θ     cos θ
                           3
                          a = cosecθ − sin θ       =       − sin θ =              =
                                                      sin θ              sin θ        sin θ
                                           2              4

                                     2
                                  cos θ    3          cos  3  θ
                           2
                          a =                      =                                          (1)
                                   sin θ                  2
                                                      sin  3  θ
                                                                              2
                                                                                        2
                                                        1              1 − cos θ     sin θ
                           3
                          b = secθ − cos θ         =       − cos θ =              =
                                                      cos θ              cos θ        cos θ
                                           2              4

                                     2
                                  sin θ    3          sin  3  θ
                           2
                          b =                      =                                          (2)
                                   cos θ                  2
                                                      cos  3  θ
                                     4       4

                                cos  3  θ sin  3  θ
                         2 2
                        a b =                                                                 (1) × (2)
                                             2
                                     2

                                     3       3  θ
                                             2
                                     2  θ cos
                                 sin
                             = cos   3  θ sin  3  θ                                           (3)
                                        4           4            4        2          4       2

                                   cos  3  θ    sin  3  θ    cos  3  θ cos  3  θ + sin  3  θ sin  3  θ       1
                              2
                         2
                        a + b =              +            =                                       =
                                                                                                                  2
                                                                                                         2
                                                                                   2
                                                                           2
                                        2
                                                     2

                                   sin  3  θ    cos  3  θ              sin  3  θ cos  3  θ           sin  3  θ cos  3  θ
                               2 2
                                    2
                                         2
                       Hence a b (a + b ) = 1.
                   12. Eliminate θ from the equations a sec θ − c tan θ = b and  b sec θ + d tan θ = c.
                       Solution:Solving both equations for sec θ and tan θ we have
                               bd + c 2             ac − b 2
                                       and tan θ =         .
                               ad + bc              ad + bc
                                                                 2    2         2    2
                                                           bd + c         ac − b
                                2
                                         2
                       Since sec θ − tan θ = 1 we have                −              = 1.
                                                           ad + bc        ad + bc
                                                    2 2          2 2            2
                       Simplifying, we have, (bd + c ) = (ac − b ) + (ad + bc) .
                    Exercise 3.2:
                    1. Express each of the following angles in radian measure:
   32   33   34   35   36   37   38   39   40   41   42