Page 36 - mathsvol1ch1to3ans
P. 36

36

                                   2 sin α                     1 − cos α + sin α
                    6. If y =                  , then prove that                 = y.
                              1 + cos α + sin α                    1 + sin α

                       Solution:

                                                             α
                        1 − cos α + sin α     2 sin 2 α  + 2 sin cos  α     2 sin  α
                                          =         2        2    2  =           2
                                                             α 2
                            1 + sin α            (sin  α  + cos )       sin  α  + cos  α
                                                     2       2              2       2
                                                                                   α
                                                   2 sin α                    4 sin cos  α             2 sin  α
                                        y =                          =             2    2       =           2
                                                                                        α
                                              1 + cos α + sin α         2 cos 2 α  + 2 sin cos  α  sin  α  + cos  α
                                                                               2        2     2        2       2
                              P ∞      2n       P  ∞      2n          P  ∞     2n     2n            π
                    7. If x =       cos θ, y =         sin θ and z =        cos θ sin θ, 0 < θ <      , then show that
                                n=0                n=0                   n=0                        2
                                                                                          1
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                                              3
                                                                         2
                       xyz = x + y + z. [Hint: Use the formula 1 + x + x + x + . . . =       , where |x| < 1].
                                                                                        1 − x
                       Solution:
                                                                    1
                                                   2
                                                        3
                       Using the formula 1 + x + x + x + . . . =        we get,
                                                                  1 − x
                                1               1                     1
                       x =            , y =           and z =                 .
                                                   2
                                                                     2
                                   2
                                                                            2
                            1 − cos θ       1 − sin θ          1 − sin θ cos θ
                         1     1    1      1 1   1 1    1 1
                           +     +      =      +     +
                        yz    xz    xy     y z   x z    x y
                                        = (1 − sin θ) (1 − sin θ cos θ)
                                           + (1 − cos θ) (1 − sin θ cos θ) + (1 − cos θ) (1 − sin θ)            ********************************************************************
                                                                     2
                                        = 1 − sin θ − sin θ cos θ + sin θ cos θ
                                                                        2
                                           +1 − cos θ − sin θ cos θ + cos θ sin θ + 1 − cos θ − sin θ + sin θ cos θ
                       *******************************************************************
                       ********************************************************************


                                        2
                                                               3
                             2
                    8. If tan θ = 1 − k , show that sec θ + tan θ cosec θ = 2 − k  2    3/2 . Also, find the values of k for
                       which this result holds.
                                          2
                       Solution:Given tan θ = 1 − k  2
                                                                                                         2
                                                            3
                                                                                                2
                                                                                      2
                                                  1      sin θ     1         1     sin θ     cos θ + sin θ        1
                                   3
                        sec θ + tan θcosec θ =        +        ×        =       +         =                  =
                                                                                      3
                                                            3
                                                                                                                   3
                                                                                                     3
                                                 cos θ   cos θ    sin θ    cos θ   cos θ         cos θ          cos θ
                                                                                                                        3
                                                                                  3                      3
                                                                               2
                                                                                                                      2
                                                   3
                                                                                                     2
                                             = sec θ                    = (sec θ) 2       = (1 + tan θ) 2    = (2 − k )2
                    9. If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p.
                       Solution:
                                         1
                        sec θ − tan θ =
                                         p
                                          2
                                         p + 1
                                sec θ =
                                           2p
                                          2
                                         p − 1
                               tan θ =
                                           2p
                                                     2
                                         tan θ      p − 1
                                sin θ =         =
                                                     2
                                         sec θ      p + 1
   31   32   33   34   35   36   37   38   39   40   41