Page 40 - mathsvol1ch1to3ans
P. 40

40

                                    1
                       (i) cos θ = − , θ lies in the III quadrant.
                                    2

                                          q                 √            √
                                                                                           2
                       Solution:sin θ = ±   1 − −   1    2  = −  3  tan θ =  3; cosecθ = − √ ; sec θ = −2; cot θ = √  1
                                                    2        2                              3                          3
                                   2
                       (ii) cos θ = , θ lies in the I quadrant.
                                   3
                                                     √
                                          r
                                                 4     5
                       Solution:sin θ = ±   1 −    =
                                                 9    3
                                                                                            q            2       √
                         (i)  cos θ  =  −  1  θ lies in the   III quadrant.  sin θ  =     ±   1 − −   1    =   −   3
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                          2                                                           2           2
                                         √
                                           3                2                                 √                  1
                        (3)(i) sin θ = −    ; cosec θ = −√ ;       sec θ =   −2; tan θ =        3;   cot θ =    √
                                          2
                                         √                   3                                √                   3
                                           5                3                  3               5                 2
                          (ii) sin θ =      ; cosec θ = −√ ;       sec θ =      ; tan θ =        ;   cot θ =    √
                                          3
                                         √                   5                 2               2                √ 5
                                           5                 3                3                2                  5
                         (iii) cos θ =      ; cosec θ =    − ;     sec θ =   √ ; tan θ = −√ ;        cot θ = −
                                          3                  2                 5               5               √ 2
                                         √                  1                  1               2                 5
                         (iv) sec θ = − 5;      cos θ = −√ ;       cot θ = − ; sin θ =        √ ; cosec θ =        ;
                                                             5                 2               5                2
                                          5                 12                13              12                 5
                          (v) cos θ =       ;   sin θ = −      ; cosec θ = −    ; tan θ = −      ;   cot θ = −     ;
                                         13                 13                12               5                12
                                           ◦
                                                       ◦
                                   cot(180 + θ) sin(90 − θ) cos(−θ)
                                                                              2
                    4. Prove that                                       = cos θ tan θ.
                                                                 ◦
                                         ◦
                                  sin(270 + θ) tan(−θ)cosec(360 + θ)
                                              ◦
                                 ◦
                          cot(180 + θ) sin(90 − θ) cos(−θ)           cot θ cos θ cos θ
                                                               =
                                                        ◦
                               ◦
                        sin(270 + θ) tan(−θ)cosec(360 + θ)        − cos θ − tan θcosecθ
                                                                     3
                                                                  cos θ cos θ sin θ
                                                               =
                                                                     sin θ sin θ
                                                                     2
                                                               = cos θ cot θ
                                                                                                3
                                                                                          2
                                                            ◦
                                                   ◦
                    5. Find all the angles between 0 and 360 which satisfy the equation sin θ = .
                                           √                                                    4
                                             3                      π 2π 4π 5π
                       Solution: sin θ = ±    . Hence the angles are  ,   ,   ,
                                            2                       3 3     3   3
                    6. Show that sin 2 π  + sin 2 π  + sin 2 7π  + sin 2 4π  = 2.
                                                                  9
                                               9
                                      18
                       Solution: sin  4π  = cos  π  −  4π  18
                                      9          2    9
                       = sin 2  π     + sin 2  π     + sin 2  7π     + cos 2  π  −  4π
                               18          9          18          2   9
                       = sin 2  π     + sin 2  π     + sin 2  7π     + cos 2  π
                               18          9          18         18
                       = 1 + sin 2  π     + sin 2  7π
                                   9          18
                       = 1 + sin 2  π     + cos 2  π  −  7π
                                   9          2    18
                       = 1 + sin 2  π     + cos 2  π
                                   9          9
                       = 1 + 1
                       = 2
                    Exercise 3.4:
   35   36   37   38   39   40   41   42   43   44   45