Page 44 - mathsvol1ch1to3ans
P. 44

44

                                          ◦
                              ◦
                        tan(75 ) + cot(75 ) = tan(45 + 30) + cot(75)
                                                (tan(45) + tan(30))    cos(75)
                                             =                      +
                                                1 − tan(45) tan(30)    sin(75)
                                                             √     √
                                                                       !
                                                     1         6 −   2
                                                1 + √            4
                                                      3
                                             =       1  +    √     √   !
                                                1 − √          2 +   6
                                                      3          4
                                                √          √     √
                                                  3 + 1      6 −   2
                                             = √        + √      √
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                  3 − 1      6 +  √ 2
                                                     √
                                             = (2 +    3) + (2 −   3)
                                             = 4
                   14. Prove that cos(A + B) cos C − cos(B + C) cos A = sin B sin(C − A).

                       Solution:
                        cos(A + B) cos(C) − cos(B + C) cos A = cos(C) cos(A) cos(B) − cos(C) sin(A) sin(B)

                                                                   − cos(A)cos(B)cos(C) + cos(A) sin(B) sin(C)

                                                                = sin(B) (sin(C) cos(A) − sin(A) cos(C))
                                                                = sin(B) sin(C − A)

                   15. Prove that sin(n + 1)θ sin(n − 1)θ + cos(n + 1)θ cos(n − 1)θ = cos 2θ, n ∈ Z.

                       Solution:
                       sin(n + 1)θ sin(n − 1)θ + cos(n + 1)θ cos(n − 1)θ = cos ((n + 1) − (n − 1)) θ = cos 2θ

                                              2π                 4π
                   16. If x cos θ = y cos θ +      = z cos θ +        , [0.4cm] find the value of xy + yz + zx.
                                               3                  3
                       Solution:
                                                                       1


                       Let x cos θ = y cos θ +  2π  = z cos θ +  4π  =
                                                3                3     k

                        1    1   1                          2π                4π
                          +    +    = k cos θ + k cos θ +        + k cos θ +
                        x    y   z                          3                  3
                                                                  π
                                    = k cos θ + 2k cos (θ + π) cos
                                                                  3
                                    = k cos θ + k cos (θ + π)
                                                   π      π

                                    = 2k cos θ +       cos
                                                   2      2
                                    = 0

                        1    1   1     yz + zx + xy
                          +    +    =
                        x    y   z          xyz

                       Hence xy+yz+zx = 0. ************************************************************************************************
                       ***********************************************************************************
   39   40   41   42   43   44   45   46   47   48   49