Page 45 - mathsvol1ch1to3ans
P. 45

45

                       Note that the three vectors in polar form: (1, θ), (1, θ + 120) and (1, θ + 240)
                       divide the complete angle into three equal parts and from symmetry arguments,
                       their sum must be equal to 0. Taking this to Cartesian coordinates, this means
                       that the sum of their x components must be equal to 0. Thus, we infer that,cos θ +
                                                   ◦
                                   ◦
                       cos(θ + 120 ) + cos(θ + 240 ) = 0.
                                                     ◦
                                                                          ◦
                       Let a = cos θ, b = cos (θ + 120 ). Then cos (θ + 240 ) = −(a + b).
                                   a              a
                       Hence y = x and z = −          x.
                                   b            a + b
                                                  2
                                          a      a          a
                                                                  2
                       xy + yz + zx =       −          −         x .
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                          b   b(a + b)    a + b
                                                 2
                       Calculating coefficient of x separately, we have
                                                            2
                       a       a 2       a      a(a + b) − a − ab
                         −           −       =                     = 0 Hence xy + yz + zx = 0.
                        b   b(a + b)   a + b         b(a + b)
                       ***********************************************************************************************
                   17. Prove that
                                                          2
                                                                   2
                          (i) sin(A + B) sin(A − B) = sin A − sin B
                             Solution:
                                                         1
                              sin(A + B) sin(A − B) =      (cos(A + B − A + B) − cos(A + B + A − B))
                                                         2
                                                         1
                                                      =    (cos(2B) − cos(2A))
                                                         2
                                                         1
                                                                                     2
                                                                     2
                                                      =     1 − 2 sin (B) − 1 + 2 sin (A)
                                                         2
                                                                       2
                                                             2
                                                      = sin (A) − sin (B)
                                                                                      2
                                                                             2
                                                                    2
                                                           2
                         (ii) cos(A + B) cos(A − B) = cos A − sin B = cos B − sin A
                             Solution:
                              cos(A + B) cos(A − B) = (cos A cos B − sin A sin B) (cos A cos B + sin A sin B)
                                                                                    2
                                                                             2
                                                                    2
                                                              2
                                                      = cos A cos B − sin A sin B
                                                                                                2

                                                              2
                                                                         2
                                                                                         2
                                                      = cos A 1 − sin B − (1 − cos A) sin B
                                                             2
                                                                     2
                                                      = cos A − sin B
                                                                 2
                                                                                2
                                                      = (1 − sin A) − (1 − cos B)
                                                                      2
                                                             2
                                                      = cos B − sin A
                                               2
                                2
                        (iii) sin (A + B) − sin (A − B) = sin 2A sin 2B
                             Solution:
                                                              1
                                 2
                                                2
                              sin (A + B) − sin (A − B) =      {(1 − cos[2(A + B)]) − (1 − cos[2(A − B)])}
                                                              2
                                                              1
                                                          =    (cos 2(A − B) − cos 2(A + B))
                                                              2
                                                          = sin 2A sin 2B
                                                2
                                                         2
                         (iv) cos 8θ cos 2θ = cos 5θ − sin 3θ
   40   41   42   43   44   45   46   47   48   49   50