Page 42 - mathsvol1ch1to3ans
P. 42

42
                                                                                                        √           √
                                                                                                 1        3     1 −   3
                                    ◦
                         (i) cos 105 = cos(60 + 45) = cos(60)cos(45) − sin(60) sin(45) =         √ − √       =     √
                                                                                                2 2    2 2      √ 2 2
                                                                                                √
                                                                                                  3      1        3 + 1
                         (ii) sin 105 ◦  = sin(60 + 45) = sin(60)cos(45) + cos(60) sin(45) =     √ + √       =     √
                                                                                                2 2    2 2        2 2
                                                                 π        π

                                 7π             π   π        tan    + tan
                        (iii) tan     = tan      +      =         4       3
                                 12            4    3      1 − tan   π  tan  π
                                              √                      4     3
                                          1 +   3                 √
                                      =       √         = −(2 +     3)
                                          1 −   3
                                                    √
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                      3 cos x − sin x
                                           ◦
                    6. Prove that (i) cos(30 + x) =                   (ii) cos(π + θ) = − cos θ
                                                            2
                       (iii) sin(π + θ) = − sin θ.
                       Solution:
                                                                          √                    √
                                                                            3         sin x      3 cos x − sin x
                                               ◦
                                                               ◦
                              ◦
                        cos(30 + x) = cos(30 ) cos x − sin(30 ) sin x =       cos x −       =
                                                                           2            2              2
                        cos(π + θ)   = cos π cos θ − sin π sin θ       = − cos θ
                        sin(π + θ)   = sin π cos θ + cos π sin θ       = − sin θ
                                                                                 ◦
                                                                     ◦
                    7. Find a quadratic equation whose roots are sin 15 and cos 15 .                             r
                                                                               √
                                                        √
                                                          3 − 1                  3 + 1                             3
                                                    ◦
                                                                          ◦
                       Solution:We know that sin 15 =      √    and cos 15 =     √    . Now sum of the roots is =
                                                          2 2                   2 2                                2
                                                  1                                          √
                                                                                        2
                       and product of the roots = √ . The quadratic equation becomes 4x − 2 6x + 1 = 0.
                                                   2
                    8. Expand cos(A + B + C). Hence prove that
                       cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B,
                                         π
                       if A + B + C =     .
                                         2
                       Solution:
                        cos(A + B + C)      = cos[A + (B + C)]
                                            = cos(A) cos(B + C) − sin(A) sin(B + C)

                        cos(A) cos(B + C) = cos(A)[cos(B) cos(C) − sin(B) sin(C)]

                                            = cos(A) cos(B) cos(C) − cos(A) sin(B) sin(C)

                        sin(A) sin(B + C) = sin(A)[sin(B) cos(C) + sin(C) cos(B)]
                                            = sin(A) sin(B) cos(C) + sin(A) sin(C) cos(B)

                        cos(A + B + C)      = cos(A) cos(B) cos(C) − cos(A) sin(B) sin(C)

                                               − sin(A) sin(B) cos(C) − sin(A) sin(C) cos(B)

                                  π

                       Since cos      = 0, cos(A + B + C) = 0. Hence we have
                                  2
                       cos(A) cos(B) cos(C) = cos(A) sin(B) sin(C) + sin(A) sin(B) cos(C) + sin(A) sin(C) cos(B)
                    9. Prove that
                                                           √
                                                  ◦
                                   ◦
                          (i) sin(45 + θ) − sin(45 − θ) =    2 sin θ.
   37   38   39   40   41   42   43   44   45   46   47