Page 46 - mathsvol1ch1to3ans
P. 46

46

                             Solution:
                                              1
                              cos 8θ cos 2θ =   cos 10θ + cos 6θ
                                              2
                                              1
                                                     2
                                           =    (2 cos 5θ − 1 + cos 6θ)
                                              2
                                              1
                                                     2
                                                                2
                                           =    (2 cos 5θ − 2 sin 3θ)
                                              2
                                                 2
                                                           2
                                           = cos 5θ − sin 3θ
                                                                                  2
                                              2
                                     2
                   18. Show that cos A + cos B − 2 cos A cos B cos(A + B) = sin (A + B).
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                       Solution:
                                    2
                                                                          2
                                                                                   2
                           2
                        cos A + cos B − 2 cos A cos B cos(A + B) = cos A + cos B − (cos(A + B) + cos(A − B)) cos(A + B)
                                                                                   2
                                                                          2
                                                                                             2
                                                                    = cos A + cos B − cos (A + B) − cos(A + B) cos(A − B)
                                                                                                         1
                                                                                   2
                                                                          2
                                                                                             2
                                                                    = cos A + cos B − cos (A + B) −        (cos 2A + cos 2B)
                                                                                                         2
                                                                       1 + cos 2A    1 + cos 2B                    1
                                                                                                      2
                                                                    =              +             − cos (A + B) −    (cos 2A + cos 2B)
                                                                            2             2                        2
                                                                              2
                                                                    = 1 − cos (A + B)
                                                                          2
                                                                    = sin (A + B)
                                                                     3
                   19. If cos(α − β) + cos(β − γ) + cos(γ − α) = − , then prove that
                                                                     2
                       cos α + cos β + cos γ = sin α + sin β + sin γ = 0.
                       Solution:
                        2 cos(α − β) + 2 cos(β − γ) + 2 cos(γ − α) + 3                                         = 0
                        2 cos α cos β + 2 sin α sin β + 2 cos β cos γ + 2 sin β sin γ + 2 cos γ cos α + 2 sin γ sin α+
                                                              2
                           2
                                            2
                                                     2
                                    2
                                                                      2
                        sin α + cos α + sin β + cos β + sin γ + cos γ                                          = 0
                                              2
                        (sin α + sin β + sin γ) + (cos α + cos β + cos γ) 2                                    = 0
                       Hence cos α + cos β + cos γ = sin α + sin β + sin γ = 0.
                   20. Show that
                                           1 + tan A                      1 − tan A
                                 ◦
                                                                ◦
                       (i) tan(45 + A) =              (ii) tan(45 − A) =            .
                                           1 − tan A                      1 + tan A
                       Solution:
                                                 ◦
                                          tan(45 ) + tan A
                              ◦
                        tan(45 + A) =
                                                    ◦
                                         1 − tan(45 ) tan A
                                         1 + tan A
                                      =
                                         1 − tan A
                                                 ◦
                                          tan(45 ) − tan A
                              ◦
                        tan(45 − A) =
                                                    ◦
                                         1 + tan(45 ) tan A
                                         1 − tan A
                                      =
                                         1 + tan A
                                                cot A cot B − 1
                   21. Prove that cot(A + B) =                  .
                                                 cot A + cot B
   41   42   43   44   45   46   47   48   49   50   51