Page 47 - mathsvol1ch1to3ans
P. 47

47

                       Solution:
                                             1
                        cot(A + B) =
                                        tan(A + B)
                                        1 − tan A tan B
                                     =
                                         tan A + tan B
                       Multiplying both Numerator and Denominator by cot A cot B
                               cot A cot B − 1
                       We get
                                cot B + cot A
                                    n                  1
                   22. If tan x =       and tan y =         , find tan(x + y).
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                  n + 1              2n + 1
                       Solution:
                                        tan(x) + tan(y)
                        tan(x + y) =
                                       1 − tan(x) tan(y)
                                           n         1
                                                +
                                         n + 1    2n + 1
                                    =             n
                                       1 −
                                           (n + 1)(2n + 1)
                                        n(2n + 1) + n + 1
                                    =
                                       (n + 1)(2n + 1) − n
                                          2
                                       2n + 2n + 1
                                    =
                                          2
                                       2n + 2n + 1
                                    = 1

                                       π            3π

                   23. Prove that tan    + θ tan        + θ   = −1.
                                       4             4
                       Solution:

                             π             3π           (1 + tan θ) (−1 + tan θ)

                        tan    + θ tan        + θ   =
                             4             4            (1 − tan θ) (1 + tan θ)

                                   π             3π

                       Hence tan      + θ tan       + θ   = −1.
                                    4            4

                                                                       1           3π                 5         π
                   24. Find the values of tan(α + β), given that cot α = , α ∈  π,      and sec β = − , β ∈     , π .
                                                                       2           2                  3        2
                       Solution:
                                                    s

                                                         25           4
                       Given tan α = 2 and tan β =           − 1 = − . Hence,
                                                         9            3
                                          4
                                      2 −       2
                       tan(α + β) =       3  =
                                          8    11
                                      1 +
                                          3
                                                                                      k − 1
                   25. If θ + φ = α and tan θ = k tan φ, then prove that sin(θ − φ) =       sin α.
                                                                                      k + 1

                       Solution:
   42   43   44   45   46   47   48   49   50   51   52