Page 50 - mathsvol1ch1to3ans
P. 50

50

                                                                                 3
                                        5
                                                   3
                                                                                                    5
                                                                                                                3
                        cos 5θ = (8 cos θ − 10 cos θ + 3 cos θ) − (6 cos θ − 6 cos θ − 8 cos θ − 8 cos θ + 16 cos θ)
                                        5
                                                   3
                               = 16 cos θ − 20 cos θ + 5 cos θ
                                                           2
                                                   1 − tan α
                    5. Prove that sin 4α = 4 tan α             .
                                                          2
                                                  (1 + tan α) 2
                       Solution:
                       sin 4α = 2 sin 2α cos 2α
                                                                 2
                                             2 tan α     1 − tan α
                        2 sin 2α cos 2α = 2            ×
                                                                 2
                                                   2
                                            1 + tan α    1 + tan α
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                          2
                                            tan α (1 − tan α)
                                       = 4                2
                                                      2
                                              (1 + tan α)
                                     ◦
                    6. If A + B = 45 , show that (1 + tan A) (1 + tan B) = 2.
                       Solution:
                                         tan A + tan B
                        tan(A + B) =                     = 1
                                        1 − tan A tan B
                            tan A + tan B + tan A tan B = 1

                        1 + tan A + tan B + tan A tan B = 2

                         (1 + tan A) + tan B(1 + tan A) = 2

                                  (1 + tan A)(1 + tan B) = 2

                                                                                   ◦
                                           ◦
                                                       ◦
                                                                   ◦
                    7. Prove that (1 + tan 1 )(1 + tan 2 )(1 + tan 3 ) . . . (1 + tan 44 ) is a multiple of 4.
                       Solution:
                                     ◦
                       If A + B = 45 ,then (1 + tan A) (1 + tan B) = 2.Here we can rearrange the terms as,
                                                                               ◦
                                                              ◦
                                  ◦
                                                                                              ◦
                                                 ◦
                       (1 + tan 1 )(1 + tan 44 )(1 + tan 2 ) . . . (1 + tan 22 )(1 + tan 23 ) = 2(22 pairs) =
                       44( is a multiple of 4)
                                       π              π

                    8. Prove that tan    + θ − tan       − θ = 2 tan 2θ.
                                       4               4
                       Solution:
                             π               π          1 + tan θ    1 − tan θ

                        tan    + θ − tan       − θ   =            −
                             4               4          1 − tan θ    1 + tan θ
                                                                   2              2
                                                        (1 + tan θ) − (1 − tan θ)
                                                     =
                                                                        2
                                                                 1 − tan θ
                                                          4 tan θ
                                                     =
                                                                2
                                                        1 − tan θ
                                                     = 2 tan 2θ
                                          ◦    √     √     √      √
                                        1
                    9. Show that cot 7       =   2 +   3 +   4 +   6.
                                        2
                       Solution:
   45   46   47   48   49   50   51   52   53   54   55