Page 54 - mathsvol1ch1to3ans
P. 54

54

                                   sin (4A − 2B) + sin (4B − 2A)
                    13. Prove that                                 = tan (A + B).
                                  cos (4A − 2B) + cos (4B − 2A)
                        Solution:

                         sin (4A − 2B) + sin (4B − 2A)       2 sin(A + B) cos(3A − 3B)
                                                         =                                = tan (A + B)
                         cos (4A − 2B) + cos (4B − 2A)       2 cos(A + B) cos(3A − 3B)
                                                                     4 cos 2A
                                             ◦
                                                              ◦
                    14. Show that cot (A + 15 ) − tan (A − 15 ) =              .
                                                                   1 + 2 sin 2A
                        Solution:
                                                                      ◦
                                                                                       ◦
                                                           cos (A + 15 )   sin (A − 15 )
                                                    ◦
                                    ◦
                        cot (A + 15 ) − tan (A − 15 ) =                  −
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                                      ◦
                                                                                       ◦
                                                           sin (A + 15 )   cos (A − 15 )
                                                                                                                 ◦
                                                                                                    ◦
                                                                      ◦
                                                                                    ◦
                                                           cos (A + 15 ) cos (A − 15 ) − sin (A − 15 ) sin (A + 15 )
                                                       =
                                                                                     ◦
                                                                                                  ◦
                                                                         sin (A + 15 ) cos (A − 15 )
                                                                     cos 2A
                                                       =
                                                                                   ◦
                                                                      ◦
                                                           sin (A + 15 ) cos (A − 15 )
                                                                     2 cos 2A
                                                       =
                                                                                     ◦
                                                                       ◦
                                                           2 sin (A + 15 ) cos (A − 15 )
                                                              2 cos 2A
                                                       =
                                                           sin 2A + sin 30 ◦
                                                            4 cos 2A
                                                       =
                                                           1 + 2 sin 2A
                    Exercise 3.7:
                                           ◦
                    1. If A + B + C = 180 , prove that
                          (i) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
                             Solution:
                              sin 2A + sin 2B + sin 2C = sin 2A + 2 sin(B + C) cos(B − C)
                                                        = 2 sin A cos A + 2 sin A cos(B − C)
                                                        = 2 sin A (cos A + cos(B − C))

                                                                       A + B − C          A − B + C
                                                        = 4 sin A cos                cos
                                                                            2                  2

                                                                       π − 2C         π − 2B
                                                        = 4 sin A cos            cos
                                                                          2               2
                                                        = 4 sin A sin C sin B
                                                                  A     B     C
                         (ii) cos A + cos B − cos C = −1 + 4 cos    cos   sin
                                                                  2     2     2
                             Solution:
   49   50   51   52   53   54   55   56   57   58   59