Page 54 - mathsvol1ch1to3ans
P. 54
54
sin (4A − 2B) + sin (4B − 2A)
13. Prove that = tan (A + B).
cos (4A − 2B) + cos (4B − 2A)
Solution:
sin (4A − 2B) + sin (4B − 2A) 2 sin(A + B) cos(3A − 3B)
= = tan (A + B)
cos (4A − 2B) + cos (4B − 2A) 2 cos(A + B) cos(3A − 3B)
4 cos 2A
◦
◦
14. Show that cot (A + 15 ) − tan (A − 15 ) = .
1 + 2 sin 2A
Solution:
◦
◦
cos (A + 15 ) sin (A − 15 )
◦
◦
cot (A + 15 ) − tan (A − 15 ) = −
Not For Sale - Veeraragavan C S veeraa1729@gmail.com
◦
◦
sin (A + 15 ) cos (A − 15 )
◦
◦
◦
◦
cos (A + 15 ) cos (A − 15 ) − sin (A − 15 ) sin (A + 15 )
=
◦
◦
sin (A + 15 ) cos (A − 15 )
cos 2A
=
◦
◦
sin (A + 15 ) cos (A − 15 )
2 cos 2A
=
◦
◦
2 sin (A + 15 ) cos (A − 15 )
2 cos 2A
=
sin 2A + sin 30 ◦
4 cos 2A
=
1 + 2 sin 2A
Exercise 3.7:
◦
1. If A + B + C = 180 , prove that
(i) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
Solution:
sin 2A + sin 2B + sin 2C = sin 2A + 2 sin(B + C) cos(B − C)
= 2 sin A cos A + 2 sin A cos(B − C)
= 2 sin A (cos A + cos(B − C))
A + B − C A − B + C
= 4 sin A cos cos
2 2
π − 2C π − 2B
= 4 sin A cos cos
2 2
= 4 sin A sin C sin B
A B C
(ii) cos A + cos B − cos C = −1 + 4 cos cos sin
2 2 2
Solution:

