Page 64 - mathsvol1ch1to3ans
P. 64

64

                       Solution:
                        a cos A + b cos B + c cos C = 2R sin A cos A + 2R sin B cos B + 2R sin C cos C Using Sine Rule

                                                   = R (sin 2A + sin 2B + sin 2C)

                                                   = R (2 sin(A + B) cos(A − B) + sin 2C)

                                                   = R (2 sin C cos(A − B) + 2 sin C cos C)

                                                   = 2R sin C (cos(A − B) − cos(A + B))
                                                   = 2R sin C (2 sin A sin B)
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                   = 2R sin A sin C sin B

                                                   = a sin C sin B

                                                                          B − C
                                             ◦
                    6. In a 4ABC, ∠A = 60 . Prove that b + c = 2a cos              .
                                                                             2
                       Solution:
                        b + c      (sin B + sin C)
                              = R
                         2a           2R sin(A)

                                        B + C       B − C
                                  2 sin         cos
                                           2          2
                              =
                                             A      A
                                        4 sin   cos
                                              2
                                                    2
                                       A     B − C
                                   cos    cos
                                       2        2
                              =
                                          A     A
                                     2 sin   cos
                                           2     2
                                     B − C
                                  cos
                              =         2
                                  2 sin(30) ◦
                                        B − C
                        b + c = 2a cos
                                           2
                    7. In a 4ABC, prove the following

                                    A                     A
                          (i) a sin    + B   = (b + c) sin
                                    2                      2
                             Solution:
                                                                                    B + C      B − C            A     B − C
                                                                               2 sin       cos            2 cos   cos
                              b + c     k sin B + k sin C    sin B + sin C             2          2             2        2
                                    =                     =                =                           =
                                a            k sin A             sin A                   A     A                  A     A
                                                                                    2 sin  cos               2 sin   cos
                                                                                         2     2                  2      2

                                        A           B − C                  B + C                    A    π                  A
                              (b + c) sin   = a cos         = a cos B −              = a cos B +      −       = a sin B +
                                         2             2                      2                     2    2                   2
                                                              A
                         (ii) a(cos B + cos C) = 2(b + c) sin 2
                                                              2
                             Solution:
   59   60   61   62   63   64   65   66   67   68