Page 59 - mathsvol1ch1to3ans
P. 59

59

                                            1             π                             π     π
                             when sin 2x = , 2x = (−1)   n   + nπ and hence x = (−1)  n   + n
                                            2              6                           12      2

                                  2
                         (ii) 2 cos θ + 3 sin θ − 3 = 0
                                      2
                             2(1 − sin θ) + 3 sin θ − 3 = 0
                                  2
                             2 sin θ − 3 sin θ + 1 = 0
                             sin (θ) = 1, sin (θ) =  1
                                                   2
                                                                    π

                             When sin (θ) = 1 ⇒ θ = nπ + (−1)    n
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                                                                    2
                                             1
                                                                    π
                             When sin (θ) =    ⇒ θ = nπ + (−1)   n
                                             2                      6
                        (iii) cos θ + cos 3θ = 2 cos 2θ
                                                             2
                                         3
                             cos θ + 4 cos θ − 3 cos θ = 4 cos θ − 2
                                            2
                                  3
                             4 cos θ − 4 cos θ − 2 cos θ + 2 = 0
                                  3
                                            2
                             2 cos θ − 2 cos θ − cos θ + 1 = 0
                                  2
                             2(cos θ)(cos θ − 1) − 1(cos θ − 1) = 0
                                   2
                             (2 cos θ − 1)(cos θ − 1) = 0
                                        1
                             cos θ = ±√ or cos θ = 1
                                         2
                                               π
                             Hence θ = 2nπ ±      or θ = 2nπ
                                               4
                         (iv) sin θ + sin 3θ + sin 5θ = 0

                              sin θ + sin 5θ + sin 3θ = 0

                              2 sin 3θ cos 2θ + sin 3θ = 0

                              sin 3θ(2 cos 2θ + 1)   = 0

                                                            1
                             Hence sin 3θ = 0 or cos 2θ = −
                                                            2
                                                               π               π
                             Solution is θ = nπ or 2θ = 2nπ ±    ⇒ θ = nπ ±     .
                                                               6               3

                         (v) sin 2θ − cos 2θ − sin θ + cos θ = 0

                             We have (sin 2θ − sin θ) − (cos 2θ − cos θ) = 0

                                         3θ     θ        θ    3θ
                             Hence 2 sin    cos   + 2 sin  sin    = 0
                                          2     2        2     2

                                 3θ      θ       θ
                             sin     cos   + sin     = 0
                                 2       2       2

                                    θ           θ
                               cos      + sin        = 0
                                    2           2
   54   55   56   57   58   59   60   61   62   63   64