Page 26 - Module & More Matematik Tambahan Tg5
P. 26

Kertas 2
                                                                              Tinggi (cm) / Height (cm)
                                                                             40
                                                     3
             1.  Lakarkan graf y = kos 2x + 1 dan y = kos
                                                     2
               bagi 0°  <  x  < 360° pada graf yang disediakan
                                                                             20
               di bawah. Kemudian, tandakan  ⊗ pada titik
               persilangan dua graf tersebut.
                                                                         Tanah
                                                                                                      Masa (s)
                                                     x + 1  for
               Sketch the graph of y = cos 2x + 1 and y = cos
                                                                              0
                                                                         Ground
                                                                                                      Time (s)
                                                    3
               0° < x < 360° on the graph provided. Hence, mark ⊗ on
                                                                     (a)  Nyatakan fungsi trigonometri yang mewakili
               the points of intersection of the two graphs.
                                                                        tinggi pedal basikal itu daripada tanah, H
               Jawapan / Answer :
                                                                        dengan masa, t.

                                                                        State the trigonometric function that represents the
                                                                        height of the bicycle pedal from the ground, H and
                   y
                                          3
                                     y = kos     x + 1
                                                                        time, t.
                                          2
                                               y = kos 3x + 1
                  2
                                                                     (b)  Berapakah diameter putaran pedal basikal
                                                                        itu?

                                                                        What is the diameter of the bicycle pedal rotation?
                  1
                                                                     Jawapan / Answer :
                                                       x
                                                                            40 – 20
                                                                                           ∴ H = 10 kos 24t + 30

                  0
                                                                     (a)  a =
                                                                                    = 10
                        60°
                                                                                             H = 10 cos 24t + 30
                                                                               2
                                                                            360°
                                                                                 = 24
                                                                        b =

                                                                             15
                                                                        c = 10 + 20 = 30

             2.  Rajah berikut menunjukkan tinggi pedal sebuah
                                                                     (b)  Diameter putaran pedal basikal
               basikal semasa dikayuh pada laju seragam dalam
                                                                        Diameter of the bicycle pedal rotation

               tempoh seminit. 120°  180°  240°  300°  2 360° x + 1  Matematik  Tingkatan 5  Bab 6  Nisbah dan Graf Fungsi Trigonometri
               The diagram shows the height of a bicycle pedal while      = 40 – 20 = 20 cm
               pedalling at a constant speed in a minute.
                                                                   Matematik Tambahan  Tingkatan 5  Bab 1  Sukatan Membulat
                                    Sudut
                                    Sudut                          KBAT                                   KBAT
                                     Sudut
                                     Sudut
                                     Sudut
                                     Sudut
                                                                   KBAT
                                                                    KBAT
                                                                    KBAT
                                                                    KBAT
                                                                    KBAT
                                                                                                          Ekstra
                                                                                                                       6
            Populasi satu spesis ikan di suatu tasik diwakili oleh   Jawapan / Answer:                                1
               1.  Rajah  menunjukkan  sebuah  bulatan  berpusat
                                                                     (c)  Panjang lengkok SP = QR
            fungsi  P(t) = 4 800 sin  t + 6 400, dengan  P ialah   (a)  Populasi maksimum ikan / Maximum fish population

                 O dan berjejari 10 cm. PQ dan SR adalah dua
                                                                        Arc length SP = QR
            populasi ikan, t ialah masa dalam hari dan 0 < x < 360.     = 4 800 + 6 400 = 11 222
                                                                                5π
                 perentas  yang  selari  dengan  PQ  =  10 cm  dan
                                                                           π
                                                                           
            The population of a species of fish in a lake is represented      Populasi minimum ikan / Minimum fish population  BAB
                                                                               =
                                                                        10
                 ∠SOR = 120°.
                                                                                 3
                                                                           6
            by function P(t) = 4 800 sin t + 6 400, where P is the fish      = 4 800 + 6 400 = 1 600                  BAB
                 The diagram shows a circle with centre O and radius
                                                                          2
                                                                                     2
            population, t is the time in days and 0 < x < 360.          SR  = 10  + 10  − 2(10)  kos 120°
                                                                                2
                                                                                             2
                 10 cm. PQ and SR are two parallel chords such that
            (a)  Hitung populasi maksimum dan minimum ikan      (b)  t = 0, 180, 360
                                                                        SR  = 10 3

                 PQ = 10 cm and ∠SOR = 120°.
                itu.                                                                      5π
                Calculate the maximum and minimum population of         Perimeter = 10 + 2    + 10 3
                                                                                          3
                the fish.     P                                 (c)  4 800 sin t + 6 400 = 1889
                                                                                         π
                                       Q
                                                                                      


            (b)  Pada hari keberapakah populasi ikan mencapai 6      sin t = –0.9398  = 10 1+   +  3 
                                         R
                             S
                                                                                         3
                                                                          –1
                400 ekor?                                          a = sin  0.9398
                During which days does the fish population reach 6   = 70
                                   O
                                                                   ∴  t  = 180 + 70, 360 – 70

                400?                                              2.  Rajah menunjukkan satu semibulatan  PADB
            (c)  Hitung nilai-nilai t apabila terdapat 1 889 ekor    berpusat  P dan satu sektor  CAB berpusat  C
                                                                        = 250, 290
                                                                                                Kuiz 6
                ikan.                                                dilukis pada satah Cartes.
                Calculate the values of t when there was 1 889 fishes.  The diagram shows a semicircle PADB with centre P
                 (a)  Cari sudut SOP dalam radian.                   and a sector CAB with centre C drawn on a Cartesian
                     Find the angle of SOP in radian.                plane.
                 (b)  Tentukan luas rantau berlorek itu.
                     Determine the area of the shaded region.                       y
                 (c)  Tunjukkan bahawa perimeter rantau                                  D

                                    
                     berlorek ialah 10 1 +  3 +  π   cm.    93                A(0, 6)  P    © Penerbitan Pelangi Sdn. Bhd.
                                             3
                     Show that the perimeter of the shaded region is                      B   x
                       
                     10 1 +  3 +  π   cm.
                                3                                                   C(0, –4)
                 (a)  PQ  = 10  + 10  −
                             2
                       2
                                  2
                     2(10)  kos POQ                                  Diberi CP = 5 3 unit, cari
                          2
                                                  10 cm              Given that CP = 5 3 units, find
                               10 + 10  − 10 2  P
                                  2
                                       2
                      kos POQ  =                        Q            (a)  diameter semibulatan itu.
                                   2(100)     S           R
                                                   120                  the diameter of the semicircle.
                       ∠POQ  = 60°                  O  10 cm         (b)  sudut ACB dalam radian.
                               120°−60°                                 the angle ACB in radian.
                       ∠SOP  =
                                   2                                 (c)  perimeter rantau berlorek
                                     π                                  the perimeter of the shaded region
                              = 30° =   rad
                                     2                               (d)  luas rantau berlorek.
                 (b)  Luas tembereng PQ /Area of segment PQ             the area of the shaded region.
                       1      π    1
                     =   (10) 2    −  (10)  sin 60°
                                        2
                       2      3    2                                 (a)  CA = 10 = CB
                                                                                 2
                     = 9.06 cm 2                                        AP =  10  − (25)(3)        y
                     Luas tembereng SR / Area of segment SR                = 5 unit
                       1      2π    1                                   Diameter AB = 10 unit            D
                     =   (10) 2     −  (10)  sin 120°                                        A(0, 6)  E
                                         2
                       2       3    2                                (b)  sin ∠PCB =   5   =   1     P
                     = 61.42 cm 2                                                  10   2                B   x
                     Maka, luas berlorek                                ∠PCB = 30°
                     Hence, the shaded area                                          π              C(0, –4)
                     = 61.42 – 9.06                                     ∠ACB = 60° =   rad
                                                                                     3
                     = 52.36 cm 2
                                                             23
   21   22   23   24   25   26   27   28   29