Page 18 - TOP ONE ADDMATHS TG4
P. 18

Additional Mathematics  Form 4  Chapter 2 Quadratic Functions

                                        2
                11.  Given the curve y = (p – 3)x  – x + 8, where p is a constant,   Paper 2
               SPM  intersects the straight line y = 4x + 6  at two points, find
               2018
                   the range of values of p.
                                        2
                   Diberi lengkung y = (p – 3)x  – x + 8, dengan keadaan p ialah     1.  It is given a and b are the roots of the quadratic equation
                   pemalar, menyilang garis lurus y = 4x + 6 pada dua titik, cari   SPM  x(x – 8) = 3h – 15, where h is a constant.
                                                                    2015
                   julat nilai  p.                                      Diberi a dan b ialah punca-punca bagi persamaan kuadratik
                                                              [3]       x(x – 8) = 3h – 15, dengan keadaan h ialah pemalar.
                           49                                           (a)  Find the range of values of h if a ≠ b.
                    Ans:  p ,
                            8                                               Cari julat nilai h jika a ≠ b.
                                                                                                                   [3]
                                           2
                12.  Given the quadratic equation hx  – 5x + k = 0, where h and   a    b
               SPM  k are constants, has roots b and 3b, express h in terms of k.  (b)  Given   2   and   2   are the roots of another quadratic
               2018
                   Diberi persamaan kuadratik hx  – 5x + k = 0, dengan keadaan   equation x  + kx + 3 = 0, where k is a constant, find
                                                                                    2
                                         2
                   h  dan  k  ialah  pemalar,  mempunyai  punca-punca  b  dan  3b.   the values of h and k.
                   Ungkapkan h dalam sebutan k.                             Diberi  a   dan   b   ialah punca-punca suatu persamaan
                                                              [3]                 2     2
                                                                                            2
                           75                                               kuadratik yang lain, x  + kx + 3 = 0, dengan keadaan k
                    Ans: h =
                           16k                                              ialah pemalar, cari nilai-nilai h dan k.
                                                                                                                   [4]
                13.  It is given 5 and  h + 1 are the roots of the quadratic   Ans: (a)  h . –   1
                   equation x  + (k – 1)x – 5 = 0, where h and k are constants.      3
                           2
                   Find the values of h and k.                              (b)  h = 1, k = –4
                   Diberi 5 dan h + 1 ialah punca-punca bagi persamaan kuadratik
                    2
                   x  + (k – 1)x – 5 = 0 dengan keadaan h dan k ialah pemalar.     2.  The curve of the quadratic function f(x) = 2(x – p)  + 3q
                                                                                                                2
                   Cari nilai-nilai h dan k.                        SPM  intersects the x-axis at points (3, 0) and (7, 0). The straight
                                                                    2016
                                                              [3]       line y = –6 touches the minimum point of the curve.
                   Ans: h = –2, k = –3                                  Lengkung bagi fungsi kuadratik f(x) = 2(x – p)  + 3q menyilang
                                                                                                         2
                                                                        paksi-x  pada  titik  (3, 0)  dan (7, 0).  Garis  lurus  y  =  –6
                14.  The diagram shows the graph of a quadratic function   menyentuh titik minimum lengkung tersebut.
                   y = f(x).                                            (a)  Find the values of p and q.
                   Rajah di bawah menunjukkan graf bagi suatu fungsi kuadratik      Cari nilai-nilai p dan q.
                   y = f(x).                                                                                       [2]
                                       y                                (b)  Hence, sketch the graph of f(x) for 0 < x < 8.
                                      3                                     Seterusnya, lakar graf f(x) untuk 0 < x < 8   [3]
                                              y = f(x)
                                                                        (c)  If the curve is reflected about the  x-axis, write the
                                                     x                      equation of the curve.
                                –4    0         6
                                                                            Jika lengkung tersebut dipantulkan pada paksi-x, tulis
                    State / Nyatakan                                        persamaan bagi lengkung tersebut.      [1]
                   (a)  the roots of the equation when f(x) = 0,        Ans:  (a)  p = 5, q = –2
                       punca-punca persamaan tersebut apabila f(x) = 0,         (b)  Refer to Answer Section
                   (b)  the equation of the axis of symmetry of the curve.         (c)  f(x) = –2(x – 5)  + 6
                                                                                           2
                       persamaan paksi simetri lengkung itu.
                                                              [2]     3.  The quadratic equation x  – 7x + 12 = 0 has two roots p
                                                                                            2
                   Ans:  (a)  –4 and 6                                  and q, where p . q.
                       (b)  x = 1                                       Persamaan kuadratik x  – 7x + 12 = 0 mempunyai dua punca
                                                                                         2
                                                                        p dan q, dengan keadaan p . q.
                                                                        (a)  Find / Cari
                                                    2
                15.  It is given the quadratic function f(x) = x  – 4x + 3 can      (i)  the values of p and q,
                   be expressed in the form f(x) = (x – 2)  + m, where m is a         nilai-nilai p dan q,
                                                2
                   constant.                                                (ii)  the range of values of x if x  – 7x + 12 . 0.
                                                                                                    2
                   Diberi fungsi kuadratik f(x) = x  – 4x + 3 boleh diungkapkan         julat nilai x jika x  –7x + 12 . 0.
                                          2
                                                                                            2
                   dalam bentuk f(x) = (x – 2)  + m, dengan keadaan m ialah                                        [4]
                                         2
                   pemalar.                                             (b)  By using the values of  p and  q in  3(a)(i), form a
                   (a)  Find the value of m.                                quadratic equation which has the roots p – 2 and q + 4.
                       Cari nilai m.                                        Dengan menggunakan nilai-nilai p dan q di 3(a)(i), bentuk
                   (b)  Sketch the graph of the function f(x).              satu persamaan kuadratik yang mempunyai punca-punca
                       Lakar graf bagi fungsi f(x).                         p – 2 dan q + 4.
                                                              [5]                                                  [3]
                   Ans:  (a)  m = –1                                    Ans:  (a)  (i)  p = 4, q = 3;   (ii)  x , 3 or x . 4
                       (b)  Refer to Answer Section                         (b)  x  – 9x + 14 = 0
                                                                                2


                                                                 33                              © Penerbitan Pelangi Sdn. Bhd.





       02 TOP 1 + MATH F4.indd   33                                                                             20/12/2019   9:34 AM
   13   14   15   16   17   18   19   20