Page 15 - TOP ONE ADDMATHS TG4
P. 15

Additional Mathematics  Form 4  Chapter 2 Quadratic Functions

                               2
                  (b)  f(x) = –2x  + 7x + 4 for / untuk –1 < x < 5
                                                                                        2
                      a , 0, then the shape of the graph is   .        When  f(x) = 0, –2x  + 7x + 4 = 0
                                                                                    (2x + 1)(4 – x) = 0
                                                                                                      1
                      Discriminant, b  – 4ac = (7)  – 4(–2)(4)                                  x = –    or  x = 4
                                    2
                                               2
                                                                                                      2
                                          = 49 + 32
                                                                                               1
                                          = 81 . 0                                       ∴ The x-intercepts are (–  , 0) and (4, 0).
                                                                                               2
                                                                                             2
                      ∴ f(x) = –2x  + 7x + 4 has two different real roots.  When x = 0, f(0) = –2(0)  + 7(0) + 4
                                 2
                                                                                       = 4

                      f(x) = –2x  + 7x + 4                             ∴ The y-intercept is (0, 4).
                               2
                              
                                   7
                                2
                          = –2 x  –  x – 2                            When x = 5, f(5) = –2(5)  + 7(5) + 4
                                                                                             2
                                   2
                                                          2
                          = –2x  –  x +    2  – 2 –                              = –50 + 35 + 4
                                                        7
                                            7
                                                      –
                                          –
                                                                                       = –11
                                            2
                                                        2
                                    7
                                 2
                                    2      2           2               ∴ (5, –11)
                          = –2 x  –  x +  –  7  2  – 2 –  –  4        When  x = –1, f(–1) = –2(–1)  + 7(–1) + 4
                              
                                                        2
                                   7
                                                                                                 2
                                                      7
                                                   
                                                        
                                           
                                2
                                           4
                                   2

                                                                                         = –2 – 7 + 4
                                                                                         = –5
                              
                                            49
                               
                          = –2 x –   7  2  – 2 –  16                 ∴ (–1, –5)
                                   4
                                                                                   f(x)
                              
                                         81
                               
                          = –2 x –   7  2  –  16                                       (1    , 10   )
                                                                                           3
                                                                                              1
                                   4
                                                                                              8
                                                                                           4
                              
                                                                                                   2
                          = –2 x –   7  2  +   81                                4          f(x) = –2x  + 7x + 4
                                         8
                                  4

                                                3
                                              
                      ∴ The maximum point is  1 , 10  1  .                    –  1 2  0      4           x
                                                4
                                                     8
                                                   3
                        The axis of symmetry is x = 1 .                       (–1, –5)
                                                   4
                                                                                       x = 1 3
                                                                                          4       (5, –11)
              18.  Solve the following problems.  PL 5
                 Selesaikan masalah-masalah berikut.
                    Example
                                   2
                  (i)  Given f(x) = 3x  – 27, find the range of values of x such that f(x) is always positive.
                      Diberi f(x) = 3x  – 27, cari julat nilai x dengan keadaan f(x) sentiasa positif.
                                 2
                  (ii)  Given f(x) = 3x  – 9, find the range of values of x such that f(x) < –6x.
                                   2
                                 2
                      Diberi f(x) = 3x  – 9, cari julat nilai x dengan keadaan f(x) < –6x.
                  (i)           f(x) . 0                          (ii)           f(x) < –6x
                           3(x  – 9) . 0                                     3x  – 9 < –6x
                                                                               2
                              2
                                                                           2
                        3(x – 3)(x + 3) . 0                              3x  + 6x – 9 < 0
                                                                          x  + 2x – 3 < 0
                                                                           2
                      When 3(x – 3)(x + 3) = 0,                         (x – 1)(x + 3) < 0
                      x = 3 or x = –3
                                                                       When (x – 1)(x + 3) = 0,
                                                                       x = 1 or x = –3
                                                       x
                                     –3         3
                                                                                                       x
                                                                                      –3       1
                       ∴ For 3x  – 27 . 0, x , –3 or x . 3.
                              2
                                                                               2
                                                                       ∴ For 3x  – 9 < –6x, –3 < x < 1.
             © Penerbitan Pelangi Sdn. Bhd.                    30
       02 TOP 1 + MATH F4.indd   30                                                                             20/12/2019   9:34 AM
   10   11   12   13   14   15   16   17   18   19   20