Page 59 - Hybrid PBD 2022 Form 4 Additional Mathematics
P. 59

Matematik Tambahan  Tingkatan 4  Bab 3 Sistem Persamaan
                                                       SPM




                                                                                 PRAKTIS PdPR         Jawapan
                                                                                 Bab 3                PRAKTIS PdPR Bab 3

                 Kertas 1                                             Kertas 2

                  1.  Satu garis lurus yang melalui titik (1, 5) bersilang     1.  Selesaikan sistem persamaan linear berikut.
                     dengan lengkung x  − 3x − y = 18 pada titik P(6, 0)   Solve the following system of linear equations.
                                      2
                     dan titik Q. Cari koordinat titik Q.                             −3x + 4y + z = 24 .................
                     A straight line which passes through point (1, 5) intersects with          5x − 2y − 3z = −34 ...............b
                             Penerbitan Pelangi Sdn Bhd. All Rights Reserved
                     the curve  x  − 3x − y = 18 at point P(6, 0) and point Q. Find the          4x − 4y − 5z = −50 ...............c
                             2
                     coordinates of point Q.
                                                [4 markah / 4 marks]                                  [5 markah / 5 marks]
                     Jawapan / Answer :                                    Jawapan / Answer :
                     Kecerunan garis lurus / Gradient of the straight line  b × 2: 10x − 4y − 6z = −68 ...............d
                       5 – 0                                               + d = 7x − 5z = −44 .....................e
                     =       = –1
                       1 – 6                                               + c: x − 4z = −26 ..........................f
                     Menggunakan y = mx + c dan (6, 0)                    f × 7: 7x − 28z = −182 .....................g
                     Using y = mx + c and (6, 0)                          e − g:  23z = 138
                     0 = −6 + c                                                      z = 6
                     c = 6
                                                                           Gantikan z = 6 ke dalam f
                     Persamaan garis lurus / Equation of the straight line  Substitute z = 6 into f
                     y = −x + 6                                            x − 4(6) = −26
                                                                                x = −2
                             x  − 3x − y = 18
                             2
                      x  − 3x − (−x + 6) = 18                              Gantikan x = –2 dan z = 6 ke dalam 
                        2
                     x  − 3x + x − 6 − 18 = 0                             Substitute x = –2 and z = 6 into 
                      2
                           x  − 2x − 24 = 0                                 −3(−2) + 4y + 6 = 24
                            2
                           (x − 6)(x + 4) = 0                                     4y + 12 = 24
                                     x = 6, x = −4                                     y = 3
                     Apabila x = –4 / When x = –4                         ∴ x = −2, y = 3, z = 6
                     y = −(−4) + 6                                      2.  Selesaikan persamaan serentak berikut. Berikan
                       = 10                                               jawapan anda betul kepada tiga tempat

                     Maka, titik Q(–4, 10).                               perpuluhan.
                     Thus, point Q(–4, 10).                               Solve the following simultaneous equations. Give your answer
                                                                          correct to three decimal places.
                                                       2
                  2.  Diberi bahawa lengkung y = (m + 3)  − 16x + 8,                      h + 2k = 5 ...................
                     dengan keadaan  m ialah pemalar, bersilang                           k  − 3h = 7 .................b
                                                                                           2
                     dengan garis lurus y = −10x + 4 pada dua titik.                                  [5 markah / 5 marks]
                     Cari julat nilai m.                                   Jawapan / Answer :
                     Given that the curve y = (m + 3)  − 16x + 8, where m is a
                                              2
                     constant, intersects with the straight line y = −10x + 4 at two        Dari (1) / From : h = 5 – 2k .................c
                     points. Find the range of values of m.                Gantikan c ke dalam b / Substitute c into b
                                                [3 markah / 3 marks]       k  – 3(5 – 2k) = 7
                                                                           2
                     Jawapan / Answer :                                     k  + 6k – 22 = 0
                                                                            2
                              (m + 3)  − 16x + 8 = −10x + 4                              −6 ±  – 4(1)(–22)
                                    2
                                                                                               6
                                                                                                2
                      (m + 3)  − 16x + 10x + 8 − 4 = 0                               k =        2(1)

                           2
                               (m + 3)  − 6x + 4 = 0                                   = 2.568 , –8.568
                                     2
                              b  − 4ac  0                                h = 5 − 2(2.568)    ,     h = 5 − 2(−8.568)
                               2
                        2
                      (−6)  − 4(m + 3)(4)  0                                = –0.136                = 22.136
                        36 − 16m − 48  0
                                −16m  12                                 ∴ h = −0.136, k = 2.568 dan / and
                                          3
                                   m  −                                        h = 22.136, k = −8.568
                                          4
                                                                  41                               © Penerbitan Pelangi Sdn. Bhd.




         03 Hybrid PBD Mate Tambahan Tg4.indd   41                                                                29/09/2021   3:30 PM
   54   55   56   57   58   59   60   61   62