Page 14 - Cambridge IGCSE Mathematics Core and Extended
P. 14

Example 7
                                         Find the value of x in the triangle
                                         on the right.                           80°
                                                                             41°   x
                                       Solution
                                         x + 41° + 80°  = 180°   The sum of the angles of a triangle is 180°.
                                                    x  = 180° – 41° – 80°
                                                       = 59°
        F. Exterior angle of a triangle

        An exterior angle of a triangle is the angle formed when one side
        of a triangle is extended.                                                     Exterior angle

        The exterior angle is equal to the sum of the two opposite interior angles.
        For example,
                         a
                                         c = a + b
                         b           c

                                       Example 8
                                         Find the values of x and y.      80°
                                                                                  y
                                                                      x
                                       Solution
                                         In the isosceles triangle, the base angles are equal.
                                           x + x + 80°  = 180°
                                             2x + 80°  = 180°
                                                   2x  = 180° – 80°
                                                   2x  = 100°
                                                    x  = 50°
                                           y = 80° + x     Exterior angle = Sum of the
                                           y = 80° + 50°   opposite interior angles.
                                             = 130°
        G. Problem-solving

                                       Example 9
                                                                              P      T
                                         In the diagram, PR and ST are straight       x  67°
                                         lines. Find the value of x.              Q
                                                                                 40°
                                       Solution                               S
                                                                                      20°
                                         In ∆ QRT,                                         R
                                          /TQR + 67° + 20° = 180°
                                                    /TQR = 180° – 67° – 20°
                                                           = 93°

                                         /PQS = /TQR = 93°        Vertically opposite angles
                                         In ∆ PQS,
                                          x + 40° + 93°  = 180°
                                                    x  = 180° – 40° – 93°
                                                       = 47°

          154    Cambridge IGCSE Mathematics




                                                                                                14/07/2022   10:14 AM
   DA1501_pg 147 to 161.indd   154                                                              14/07/2022   10:14 AM
   DA1501_pg 147 to 161.indd   154
   9   10   11   12   13   14   15   16   17   18   19