Page 104 - Engineering Mathematics Workbook_Final
P. 104

Differential Equations & Partial Differential Equations

            118.  A solution of the differential equation                (a) 1, 2              (b) 2, 8
                    dy  =  y +  1 is _________                           (c) 3, 8              (d) 4, 8

                    dx
                                                                  122.  The degree of the differential
                   (a)  y =  e −  x  1   (b)  y =  e +  x  1                                2   2  1/4  3

                                                                         equation  y +      x     d y         =  d y
                                                                                               2 
                   (c)  y =  e +  x  x    (d)  y =  e x− 1                                      dx        dx 3
                                                                                                   
                                              [IISC 2002]                is


            119.  The differential equation                              (a) 2                 (b) 3
                     2
                    d y  +  4 dy  +  4y =  has solution                  (c) 4                 (d) 1
                                        0
                    dx 2     dx
                   _________                                      123.  The differential equation of the
                                                                         family of circles of radius ‘r’ and
                                +
                       A
                   (a)  cos2x B      sin2x                               whose centre lies on ‘x’ axis
                   (b)  Ae −  2x  +  Bxe −  2x                                2       dy   2  
                                                                                                  2
                                                                         (a) r     1+      dx               =  x
                                    2x
                          2x
                   (c)  Ae +   Bxe                                                     dy     2    
                                                                                                   2
                                   2x
                   (d)  Ae − 2x  +  Be           [IISC 2002]             (b)  y   2     1+      dx               =  r
                                                                                          
            120.  The solution of first order ODE                        (c)  x   2     1+      dy     2      =  2
                      1
                    xy =  xy + + +     1 is ________                                    dx               r
                                   y
                               x
                         =
                   (a)  y cx e −  (  x  ) 1                              (d)  y   2     1 −      dy     2      =  r
                                                                                                  2
                                                                                      dx         
                                                                                          
                   (b)  y =  cxe −  x  1                          124.  The differential equation of the
                                                                         family of curves of the form

                                                                                 +
                   (c)  y =  ce −  x  x                                   y =  Ax Bx  is
                                                                                       2
                   (d)  y ce=  x  −  x − 1         [IISC 2005]           (a)  x y −  2xy +   2y =
                                                                                         1
                                                                              2 11
                                                                                                  0
            121.  The order and degree of the                            (b)  x y +  2xy +   2y =
                                                                              2 11
                                                                                         1
                                                                                                   0
                   differential equation
                          3   2  4/3                                 (c) 2x y −    xy +       0
                                                                                2 11
                                                                                         1
                         d y         d y                                                 2y =
                                           2
                     1 +      3         =  2   are
                                                                              2 11
                         dx        dx                              (d)  x y −  2xy −   2y =
                                                                                         1
                                                                                                   0


                                                            102
   99   100   101   102   103   104   105   106   107   108   109