Page 116 - Engineering Mathematics Workbook_Final
P. 116

Differential Equations & Partial Differential Equations
                                dy   2                          SOULUTION OF DIFFERENTIAL
                        2 
                                            2
                   (a) r  1+              =  x                               EQUATIONS
                                dx      
                                    
                                                                  197.  A solution of the first order
                                    2                                differential equation
                                       
                         2 
                   (b)  y  1+   dy    =  r
                                             2
                                dx                                              sin (x y )
                                                                                              +
                                                                                     )
                                                                                                               +
                                                                                                      x
                                                                      y 'cos (x y +           = e −  cos (x y )
                                                                                  +
                                                                                            x
                                dy   2                               is
                        2 
                                            2
                   (c)  x  1+             =  r
                                dx                                          (           x
                                                                     (a) sin x +   ) y − e = constant
                                     2                                      x
                         2      dy                                   (b) e  tan (x +  y =  ) constant
                   (d)  y  1−             =  r
                                             2
                                dx      
                                                                                           x    x
                                                                                  (
                                                                             x
                                                                         (c)  cos x +    ) y − e +  e =  constant
            195.  A spherical naphthalene ball exposed
                                                                                  (
                                                                                                 x
                                                                                             x
                   to the atmosphere loses volume at a                   (d)  sin x +   ) y − e +  e =  constant
                                                                             x
                   rate proportional to its instantaneous
                   surface area due to evaporation. If the                                              [GATE]
                   initial diameter of the ball is 2 cm and
                   the diameter reduces to 1 cm after 3           198.  Consider the following differential
                   months, the ball completely                           equation :
                   evaporates in
                                                                                          y                   y
                                                                                +
                   (a) 6 months          (b) 9 months                      ( x ydx xdy )cos  x  =  ( y xdy −  ydx )sin
                                                                                                              x
                   (c) 12 months         (d) infinite time               Which of the following is the solution
                                            [GATE-2006]                  of the above equation (c is an
                                                                         arbitrary constant?
                                            0
            196.  A body originally at 60 C  cools                           x      y              x     y
                               0
                   down to 40 C  in 15 min when kept                     (a)  cos   x  =  c    (b)  sin  x  = c
                                                                                                   y
                                                                             y
                                                0
                   in air at a temperature of 25 C .
                   What will be the temperature of the                              y                     y
                   body at the end of 30 min?                            (c)  xy cos  x  =  c    (d)  xy sin  x  = c

                            0
                                                 0
                   (a) 35.2 C            (b) 31.5 C                                 [GATE-2015-CE-SET-II]
                            0
                                               0
                   (c) 28.7 C            (d) 15 C                 199.  The solution of the differential
                                                                         equation
                                       [GATE-2007-CE]
                                                                         ( x +  y +  2x dx +   2y dy =  is
                                                                                        )
                                                                            2
                                                                                 2
                                                                                                        0





                                                            114
   111   112   113   114   115   116   117   118   119   120   121